Multi-Substrate Specificity and the Evolutionary Basis for Interdependence in tRNA Editing and Methylation Enzymes.

Front Genet

Department of Microbiology, The Ohio State Biochemistry Program, The Center for RNA Biology, The Ohio State University, Columbus, OH, United States.

Published: February 2019

AI Article Synopsis

  • There is a link between how tRNA modification enzymes recognize multiple tRNA substrates and the presence of heteromultimerization (the combination of different subunits).
  • Enzymes that modify the same residue across various tRNA sequences often form a heterodimeric structure to accommodate different substrates while ensuring high specificity in their reactions.
  • The review explores two enzyme classes—tRNA methyltransferases and tRNA editing deaminases—focusing on how multimerization may have evolved and its implications for tRNA modifications in various biological systems.

Article Abstract

Among tRNA modification enzymes there is a correlation between specificity for multiple tRNA substrates and heteromultimerization. In general, enzymes that modify a conserved residue in different tRNA sequences adopt a heterodimeric structure. Presumably, such changes in the oligomeric state of enzymes, to gain multi-substrate recognition, are driven by the need to accommodate and catalyze a particular reaction in different substrates while maintaining high specificity. This review focuses on two classes of enzymes where the case for multimerization as a way to diversify molecular recognition can be made. We will highlight several new themes with tRNA methyltransferases and will also discuss recent findings with tRNA editing deaminases. These topics will be discussed in the context of several mechanisms by which heterodimerization may have been achieved during evolution and how these mechanisms might impact modifications in different systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382703PMC
http://dx.doi.org/10.3389/fgene.2019.00104DOI Listing

Publication Analysis

Top Keywords

trna editing
8
trna
6
enzymes
5
multi-substrate specificity
4
specificity evolutionary
4
evolutionary basis
4
basis interdependence
4
interdependence trna
4
editing methylation
4
methylation enzymes
4

Similar Publications

sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography.

Anal Chem

January 2025

Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.

View Article and Find Full Text PDF

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

Mitochondrial Genome Insights into Evolution and Gene Regulation in .

Int J Mol Sci

January 2025

College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China.

As a globally distributed perennial Gramineae, can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of using genomic data from the PacBio and BGI platforms. The mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!