The inherent complexity of brain tissue, with brain cells intertwining locally and projecting to distant regions, has made three-dimensional visualization of intact brains a highly desirable but challenging task in neuroscience. The natural opaqueness of tissue has traditionally limited researchers to techniques short of single cell resolution such as computer tomography or magnetic resonance imaging. By contrast, techniques with single-cell resolution required mechanical slicing into thin sections, which entails tissue distortions that severely hinder accurate reconstruction of large volumes. Recent developments in tissue clearing and light sheet microscopy have made it possible to investigate large volumes at micrometer resolution. The value of tissue clearing has been shown in a variety of tissue types and animal models. However, its potential for examining the songbird brain remains unexplored. Songbirds are an established model system for the study of vocal learning and sensorimotor control. They share with humans the capacity to adapt vocalizations based on auditory input. Song learning and production are controlled in songbirds by the song system, which forms a network of interconnected discrete brain nuclei. Here, we use the CUBIC and iDISCO+ protocols for clearing adult songbird brain tissue. Combined with light sheet imaging, we show the potential of tissue clearing for the investigation of connectivity between song nuclei, as well as for neuroanatomy and brain vasculature studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382697 | PMC |
http://dx.doi.org/10.3389/fnana.2019.00013 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX, 77843-3120, USA.
The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target.
View Article and Find Full Text PDFBMJ Open
December 2024
Wiser Healthcare Research Collaboration, Sydney, New South Wales, Australia
Introduction: A diagnosis of melanoma in situ presents negligible risk to a person's lifespan or physical well-being, but existing terminology makes it difficult for patients to distinguish these from higher risk invasive melanomas. This study aims to explore whether using an alternative label for melanoma in situ may influence patients' management choices and anxiety levels.
Methods And Analysis: This study is a between-subjects randomised online experiment, using hypothetical scenarios.
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!