Breast cancer patients commonly present with comorbidities which are known to influence treatment decisions and survival. We aim to examine agreement between self-reported and register-based medical records (National Patient Register [NPR]). Ascertainment of nine conditions, using individually-linked data from 64,961 women enrolled in the Swedish KARolinska MAmmography Project for Risk Prediction of Breast Cancer (KARMA) study. Agreement was assessed using observed proportion of agreement (overall agreement), expected proportion of agreement, and Cohen's Kappa statistic. Two-stage logistic regression models taking into account chance agreement were used to identify potential predictors of overall agreement. High levels of overall agreement (i.e. ≥86.6%) were observed for all conditions. Substantial agreement (Cohen's Kappa) was observed for myocardial infarction (0.74), diabetes (0.71) and stroke (0.64) between self-reported and NPR data. Moderate agreement was observed for preeclampsia (0.51) and hypertension (0.46). Fair agreement was observed for heart failure (0.40) and polycystic ovaries or ovarian cysts (0.27). For hyperlipidemia (0.14) and angina (0.10), slight agreement was observed. In most subgroups we observed negative specific agreement of >90%. There is no clear reference data source for ascertainment of conditions. Negative specific agreement between NPR and self-reported data is consistently high across all conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400937 | PMC |
http://dx.doi.org/10.1038/s41598-019-40072-0 | DOI Listing |
PLoS One
January 2025
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Objective: This study aimed to introduce and evaluate a novel software-based system, BioTrace, designed for real-time monitoring of thermal ablation tissue damage during image-guided radiofrequency ablation for hepatocellular carcinoma (HCC).
Methods: BioTrace utilizes a proprietary algorithm to analyze the temporo-spatial behavior of thermal gas bubble activity during ablation, as seen in conventional B-mode ultrasound imaging. Its predictive accuracy was assessed by comparing the ablation zones it predicted with those annotated by radiologists using contrast-enhanced computed tomography (CECT) 24 hours post-treatment, considered the gold standard.
PLoS One
January 2025
Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.
View Article and Find Full Text PDFPLoS One
January 2025
Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America.
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions.
View Article and Find Full Text PDFPLoS One
January 2025
Electrical, Mechanical & Computer Engineering School, Federal University of Goias, Goiania, Brazil.
This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!