Epithelial tissues require the removal and replacement of damaged cells to sustain a functional barrier. Dying cells provide instructive cues that can influence surrounding cells to proliferate, but how these signals are transmitted to their healthy neighbors to control cellular behaviors during tissue homeostasis remains poorly understood. Here we show that dying stem cells facilitate communication with adjacent stem cells by caspase-dependent production of Wnt8a-containing apoptotic bodies to drive cellular turnover in living epithelia. Basal stem cells engulf apoptotic bodies, activate Wnt signaling, and are stimulated to divide to maintain tissue-wide cell numbers. Inhibition of either cell death or Wnt signaling eliminated the apoptosis-induced cell division, while overexpression of Wnt8a signaling combined with induced cell death led to an expansion of the stem cell population. We conclude that ingestion of apoptotic bodies represents a regulatory mechanism linking death and division to maintain overall stem cell numbers and epithelial tissue homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400930PMC
http://dx.doi.org/10.1038/s41467-019-09010-6DOI Listing

Publication Analysis

Top Keywords

apoptotic bodies
16
stem cell
12
stem cells
12
dying cells
8
epithelial tissue
8
tissue homeostasis
8
wnt signaling
8
cell numbers
8
cell death
8
cells
7

Similar Publications

Regenerative properties of bone marrow mesenchymal stem cell derived exosomes in rotator cuff tears.

J Transl Med

January 2025

Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.

View Article and Find Full Text PDF

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

Dual Checkpoint Inhibition in M2 Macrophages via Anti-PD-L1 and siRNA-Loaded M1-Exosomes: Enhancing Tumor Immunity through RNA-Targeting Strategies.

Eur J Pharmacol

January 2025

Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran. Electronic address:

The interaction between a cluster of differentiation 47 (CD47) on cancer cells and signal regulatory protein alpha (SIRPα) on macrophages is thought to hinder macrophage phagocytic activity, which can be blocked by combining siRNAs targeting SIRPα (siSIRPα) with simultaneous involvement of activating receptors like FcRs (Fc receptors) anti-programmed death-ligand 1 (anti-PD-L1). For this study, M1 macrophage-derived exosomes were used to deliver the siRNAs, isolated from lipopolysaccharide (LPS)-stimulated RAW264.7 cells and electroporated with siSIRPα.

View Article and Find Full Text PDF

Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders.

J Control Release

January 2025

Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile. Electronic address:

Background: Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Article Synopsis
  • Triple-negative breast cancer (TNBC) is an aggressive form of cancer that often spreads to distant sites in the body, and understanding how it metastasizes is crucial for treatment.
  • Exosomes, which are small extracellular vesicles that carry RNA molecules, play a significant role in TNBC metastasis and present new opportunities for diagnosing and treating the disease via liquid biopsy.
  • Circular RNAs (circRNAs), a subtype of noncoding RNAs found in exosomes, can influence gene expression and are abundant in EVs; they may enhance communication between cancer cells, thereby influencing TNBC progression and offering potential biomarkers for prognosis and monitoring.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!