The contrast and sensitivity of in vivo fluorescence imaging has been revolutionized by molecular fluorophores operating in the second near-infrared window (NIR-II; 1000-1700 nm), but an ongoing challenge is the solvatochromism-caused quenching in aqueous solution for the long-wavelength absorbing fluorophores. Herein, we develop a series of anti-quenching pentamethine cyanine fluorophores that significantly overcome the severe solvatochromism, thus affording stable absorption/emission beyond 1000 nm with up to ~ 44-fold enhanced brightness and superior photostability in aqueous solution. These advantages allow for deep optical penetration (8 mm) as well as high-contrast and highly-stable lymphatic imaging superior to clinical-approved indocyanine green. Additionally, these fluorophores exhibit pH-responsive fluorescence, allowing for noninvasive ratiometric fluorescence imaging and quantification of gastric pH in vivo. The results demonstrate reliable accuracy in tissue as deep as 4 mm, comparable to standard pH electrode method. This work unlocks the potential of anti-quenching pentamethine cyanines for NIR-II biological applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401027 | PMC |
http://dx.doi.org/10.1038/s41467-019-09043-x | DOI Listing |
Mater Horiz
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
Small-molecule fluorophores are invaluable tools for fluorescence imaging. However, means for their covalent conjugation to the target proteins limit applications in multicolor imaging. Here, we identify 2-[(alkylhio)(ryl)ethylene]alononitrile (TAMM) molecules reacting with 1,2-aminothiol at a labeling rate over 10 M s through detailed mechanistic investigation.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden.
Lineage tracing methods enable the identification of all progeny generated by a single cell. High-throughput lineage tracing in the mammalian brain involves parallel labeling of thousands of progenitor cells with genetic barcodes in vivo followed by single-cell RNA-seq of lineage relations and cell types. Here we describe the generation of barcoded lentivirus, microinjections into the embryonic day 9.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China.
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!