Papillomaviruses exhibit species-specific tropism, thereby limiting understanding and research of several aspects of HPV infection and carcinogenesis. The discovery of a murine papillomavirus (MmuPV1) provides the opportunity to study papillomavirus infections in a tractable, laboratory model. MmuPV1 infects and causes disease in the cutaneous epithelium, as well as the mucosal epithelia of the oral cavity and anogenital tract. In this report, we describe a murine model of MmuPV1 infection and neoplastic disease in the female reproductive tracts of wild-type immunocompetent FVB mice. Low-grade dysplastic lesions developed in reproductive tracts of FVB mice infected with MmuPV1 for 4 months, and mice infected for 6 months developed significantly worse disease, including squamous cell carcinoma (SCC). We also tested the contribution of estrogen and/or UV radiation (UVR), two cofactors we previously identified as being involved in papillomavirus-mediated disease, to cervicovaginal disease. Similar to HPV16 transgenic mice, exogenous estrogen treatment induced high-grade precancerous lesions in the reproductive tracts of MmuPV1-infected mice by 4 months and together with MmuPV1 efficiently induced SCC by 6 months. UV radiation and exogenous estrogen cooperated to promote carcinogenesis in MmuPV1-infected mice. This murine infection model represents the first instance of papillomavirus-mediated carcinogenesis in the female reproductive tract of wild-type mice resulting from active virus infection and is also the first report of the female hormone estrogen contributing to this process. This model will provide an additional platform for fundamental studies on papillomavirus infection, cervicovaginal disease, and the role of cellular cofactors during papillomavirus-induced carcinogenesis. Tractable and efficient models of papillomavirus-induced pathogenesis are limited due to the strict species-specific and tissue-specific tropism of these viruses. Here, we report a novel preclinical murine model of papillomavirus-induced cervicovaginal disease in wild-type, immunocompetent mice using the recently discovered murine papillomavirus, MmuPV1. In this model, MmuPV1 establishes persistent viral infections in the mucosal epithelia of the female reproductive tract, a necessary component needed to accurately mimic HPV-mediated neoplastic disease in humans. Persistent MmuPV1 infections were able to induce progressive neoplastic disease and carcinogenesis, either alone or in combination with previously identified cofactors of papillomavirus-induced disease. This new model will provide a much-needed platform for basic and translational studies on both papillomavirus infection and associated disease in immunocompetent mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401479 | PMC |
http://dx.doi.org/10.1128/mBio.00180-19 | DOI Listing |
JMIR Hum Factors
January 2025
Women's Health Research Institute, Vancouver, BC, Canada.
Background: Digital health innovations provide an opportunity to improve access to care, information, and quality of care during the perinatal period, a critical period of health for mothers and infants. However, research to develop perinatal digital health solutions needs to be informed by actual patient and health system needs in order to optimize implementation, adoption, and sustainability.
Objective: Our aim was to co-design a research agenda with defined research priorities that reflected health system realities and patient needs.
Proc Natl Acad Sci U S A
February 2025
Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211.
Understanding how epithelial cells in the female reproductive tract (FRT) differentiate is crucial for reproductive health, yet the underlying mechanisms remain poorly defined. At birth, FRT epithelium is highly malleable, allowing differentiation into various epithelial types, but the regulatory pathways guiding these early cell fate decisions are unclear. Here, we use neonatal mouse endometrial organoids and assembloid coculture models to investigate how innate cellular plasticity and external mesenchymal signals influence epithelial differentiation.
View Article and Find Full Text PDFPLoS One
January 2025
Unit of Physiotherapy, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
Background: Musculoskeletal pain (MSKP) disorders entail a significant burden for individuals and healthcare systems. The PainSMART-strategy has been developed aiming to reduce divergences between patients and healthcare practitioners in their understanding of MSKP by providing a shared basis for communication and to facilitate patients' self-management of MSKP. The objective of the PainSMART-project is to evaluate the effects of the PainSMART-strategy as an adjunct to usual physiotherapy management compared to usual physiotherapy management alone.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
Background: Anemia in pregnancy is an important public health challenge; however, it has not been thoroughly studied in Georgia. We assessed the prevalence of anemia during pregnancy across Georgia and the association between anemia in the third trimester of pregnancy and adverse maternal outcomes.
Methods: We used data from the Georgian Birth Registry and included pregnant women who delivered between January 1, 2019, and August 31, 2022 (n = 158,668).
PLoS One
January 2025
Department of Reproductive Medicine, Guangzhou Women and Children's Medical center Liuzhou Hospital, Liuzhou, Guangxi, China.
Endometrial cancer (UCEC) is the most prevalent gynecological malignancy in high-income countries, and its incidence is rising globally. Although early-stage UCEC can be treated with surgery, advanced cases have a poor prognosis, highlighting the need for effective molecular biomarkers to improve diagnosis and prognosis. In this study, we analyzed mRNA and miRNA sequencing data from UCEC tissues and adjacent non-cancerous tissues from the TCGA database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!