Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Despite advances in in vivo imaging and experimental techniques, the nature of transport mechanisms in the brain remain elusive. Mathematical modelling verified using available experimental data offers a powerful tool for investigating hypotheses regarding extracellular transport of molecules in brain tissue. Here we describe a tool developed to aid in investigation of interstitial transport mechanisms, especially the potential for convection (or bulk flow) and its relevance to interstitial solute transport, for which there is conflicting evidence.
Methods: In this work, we compare a large body of published experimental data for transport in the brain to simulations of purely diffusive transport and simulations of combined convective and diffusive transport in the brain interstitium, incorporating current theories of perivascular influx and efflux.
Results: The simulations show (1) convective flow in the interstitium potentially of a similar magnitude to diffusive transport for molecules of interest and (2) exchange between the interstitium and perivascular space, whereby fluid and solutes may enter or exit the interstitium, are consistent with the experimental data. Simulations provide an upper limit for superficial convective velocity magnitude (approximately [Formula: see text] = 50 μm min), a useful finding for researchers developing techniques to measure interstitial bulk flow.
Conclusions: For the large molecules of interest in neuropathology, bulk flow may be an important mechanism of interstitial transport. Further work is warranted to investigate the potential for bulk flow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402182 | PMC |
http://dx.doi.org/10.1186/s12987-019-0126-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!