Evaporation from nanopores plays an important role in various natural and industrial processes that require efficient heat and mass transfer. The ultimate performance of nanopore-evaporation-based processes is dictated by evaporation kinetics at the liquid-vapor interface, which has yet to be experimentally studied down to the single nanopore level. Here we report unambiguous measurements of kinetically limited intense evaporation from individual hydrophilic nanopores with both hydrophilic and hydrophobic top outer surfaces at 22 °C using nanochannel-connected nanopore devices. Our results show that the evaporation fluxes of nanopores with hydrophilic outer surfaces show a strong diameter dependence with an exponent of nearly -1.5, reaching up to 11-fold of the maximum theoretical predication provided by the classical Hertz-Knudsen relation at a pore diameter of 27 nm. Differently, the evaporation fluxes of nanopores with hydrophobic outer surfaces show a different diameter dependence with an exponent of -0.66, achieving 66% of the maximum theoretical predication at a pore diameter of 28 nm. We discover that the ultrafast diameter-dependent evaporation from nanopores with hydrophilic outer surfaces mainly stems from evaporating water thin films outside of the nanopores. In contrast, the diameter-dependent evaporation from nanopores with hydrophobic outer surfaces is governed by evaporation kinetics inside the nanopores, which indicates that the evaporation coefficient varies in different nanoscale confinements, possibly due to surface-charge-induced concentration changes of hydronium ions. This study enhances our understanding of evaporation at the nanoscale and demonstrates great potential of evaporation from nanopores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.8b09258 | DOI Listing |
Mater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Phys Chem Chem Phys
January 2025
Center of Innovation for Flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
This study investigates the effect of confinement on the phase behavior of carbon dioxide (CO) and its implications for storage in nanometer-scale pores. A patented gravimetric apparatus was employed to experimentally measure the adsorption and desorption isotherms at varying pore sizes and temperatures. The isotherms were generated at temperatures below the critical point of CO (from -23.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Desalination techniques using the photothermal effect hold significant potential for producing fresh water from saline or polluted sources due to their low energy consumption. In the case of commercialized carbon materials are related to heat loss resulting from high thermal conductivity, and metal particles still have trouble in commercialization or cost-effectiveness. This is because a photothermal desalination evaporator must simultaneously exhibit high water evaporation performance, excellent energy conversion efficiency, sufficient hydrophilicity, and low heat loss.
View Article and Find Full Text PDFLangmuir
November 2024
Center of Innovation for Flow through Porous Media, Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States.
The impact of wettability on the confined phase behavior of fluids is paramount for various applications, such as gas storage, carbon dioxide sequestration, and water purification. However, the understanding of the fluid-solid intermolecular interactions in confined systems is still limited and requires further investigation. This work investigates the effect of hydrophilic and hydrophobic nanoporous materials on the adsorption and desorption isotherms of -butane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!