Background And Objectives: Oral ulceration is one of the most common debilitating condition that affects the oral cavity. In this study, the effect of locally injected platelet rich plasma (PRP) and bone marrow-derived mesenchymal stem cells (BMSCs) on the healing of oral ulcer was investigated.

Methods And Results: An ulcer was induced in buccal mucosa of rats by using 5mm biopsy punch followed by application of cotton swab soaked with formocresol for 60sec. The ulcer was left untreated in the control group, treated with intralesional injection of PRP, or isolated cultured BMSCs. Data were analyzed clinically, histologically and immunohistologically on day 3, 5, 7 and 10. BMSCs group showed smaller ulcer area throughout the whole experimental period than the other groups with complete resolution of the ulcer on day 10, unlike the control group. However, there was no significant difference with PRP, on day 5, 7 and 10, regarding clinical ulcer size. BMSCs group showed better histological results regarding the rate of epithelial cell migration, the number of inflammatory cells, thickness and organization of collagen fibres and the number of blood vessels, with complete re-epithelization on day 10. BMSCs group showed a greater number of anti-PCNA positive nuclei throughout the whole experimental period than the other groups except on day 5, PRP had higher mean numbers of anti-PCNA positive nuclei in both tissues.

Conclusions: Both PRP and BMSCs accelerate wound healing and enhance the quality of the healing tissue with the latter being slightly more effective and faster.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6457708PMC
http://dx.doi.org/10.15283/ijsc18074DOI Listing

Publication Analysis

Top Keywords

bmscs group
12
mesenchymal stem
8
stem cells
8
platelet rich
8
rich plasma
8
oral ulcer
8
control group
8
day bmscs
8
experimental period
8
period groups
8

Similar Publications

Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore mitochondrial transfer in dental mesenchymal stem cells (MSCs) and its impact on their ability to differentiate into odontogenic cells.
  • Flow cytometry, immunostaining, and advanced imaging techniques were utilized to analyze the presence and significance of mitochondrial transfer in these cells, revealing its role in promoting odontogenic differentiation.
  • The research found evidence of mitochondrial transfer through structures called tunneling nanotubes (TNTs) and showed that inhibiting this transfer affected key differentiation markers and gene expression related to odontogenesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!