Mitochondrial dysfunctions induced by oxidative stress could play a pivotal role in the development of testicular damage and degeneration, leading to impaired fertility in adulthood. MitoQ as mitochondria-targeted antioxidant has been used in many diseases for a long time, but its therapeutic effects on testicular injury 'have not been reported yet. Here, we examined the protective action mechanism of MitoQ on testicular injury from oxidative stress induced by triptolide (TP). Mice were orally administrated with MitoQ (1.3, 2.6 and 5 .2mg/kg, respectively) in a TP-induced model of testicular damage for 14 days. And then testis injuries were comprehensively evaluated in terms of morphological changes, spermatogenesis assessment, blood-testis barrier (BTB) integrity, and apoptosis. The results demonstrated MitoQ effectively increased testicular weight, maintained the integrity of BTB, protected microstructure of testicular tissue and sperm morphology by inhibition of oxidative stress. Further mechanism studies revealed that MitoQ markedly activates the Keap1-Nrf2 antioxidative defense system characterized by increasing the expression of Nrf2 and its target genes HO-1 and NQO1. Meanwhile, MitoQ upregulated the expression of mitochondrial dynamics proteins Mfn2 and Drp-1and exerted a protective effect on mitochondria. On this basis, the results from pharmacokinetic study indicated that the MitoQ could enter into testis tissues after oral administration in despite of the low absolute bioavailability, which provided the material basis for MitoQ in the treatment of testicular damage. More importantly, MitoQ reached mitochondria quickly and had an outstanding feature of mitochondria targeting in Sertoli cells. Therefore, these results provide information for the application of MitoQ against testicular injury diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2019.03.001 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Front Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Cardiometabolic and Endocrine Institute, North Brunswick, NJ 08902, USA.
Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!