A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. | LitMetric

Lipid mediators (LM) encompass pro-inflammatory prostaglandins (PG) and leukotrienes (LT) but also specialized pro-resolving mediators (SPM) which display pivotal bioactivities in health and disease. Pharmacological intervention with inflammatory disorders such as osteoarthritis and rheumatoid arthritis commonly employs anti-inflammatory drugs that can suppress PG and LT formation, which however, possess limited effectiveness and side effects. Here, we report on the discovery and characterization of the two novel benzoxanthene lignans 1 and 2 that modulate select LM biosynthetic enzymes enabling the switch from pro-inflammatory LT to SPM biosynthesis as potential pharmacological strategy to intervene with inflammation. In cell-free assays, compound 1 and 2 inhibit microsomal prostaglandin E synthase-1 and leukotriene C synthase (IC ∼ 0.6-3.4 µM) and potently interfere with 5-lipoxygenase (5-LOX), the key enzyme in LT biosynthesis (IC = 0.04 and 0.09 µM). In human neutrophils, monocytes and M1 and M2 macrophages, compound 1 and 2 efficiently suppress LT biosynthesis (IC < 1 µM), accompanied by elevation of 15-LOX-derived LM including SPM. In zymosan-induced murine peritonitis, compound 1 and 2 ameliorated self-limited inflammation along with suppression of early LT formation and elevation of subsequent SPM biosynthesis in vivo. Together, these novel benzoxanthene lignans promote the LM class switch from pro-inflammatory towards pro-resolving LM to terminate inflammation, suggesting their suitability as novel leads for pharmacotherapy of arthritis and related inflammatory disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2019.03.003DOI Listing

Publication Analysis

Top Keywords

novel benzoxanthene
8
benzoxanthene lignans
8
pharmacological strategy
8
lignans favorably
4
favorably modulate
4
modulate lipid
4
lipid mediator
4
biosynthesis
4
mediator biosynthesis
4
biosynthesis promising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!