The use of soft microgel particles for stabilizing emulsions has captured increasing attention across a wide range of disciplines in the past decades. Being soft, the nanoparticles, which are spherical in solution, undergo a structure change when adsorbed at the oil-water interface. This morphology change leads to the special dynamic properties of interface layers and packing structures, which then alter the interfacial tension and rheological properties of the interface. In addition, emulsions stabilized by these particles, known as Pickering emulsions, can be triggered by changing a variety of environmental conditions, which is especially desirable in industrial applications such as oil transportation processes and biphasic catalysis, where the emulsions can be stabilized and destabilized on demand. Although many studies of the behavior of soft microgel nanoparticles at interfaces have been reported, there are still many challenges in gaining a full understanding of the structure, dynamics, and effective interactions between microgels at the interface. In this Feature Article, we address some of the most important findings and problems in the field. They include the adsorption kinetics of soft microgel particles, particle conformation at the interface, pH and thermal responsiveness, and the interfacial rheological properties of soft-particle-occupied interfaces. We also discuss some potential benefits of using emulsions stabilized by soft particles for food applications as an alternative to conventional surfactant-based systems. We hope to encourage further investigation of these problems, which would be very beneficial to extending this knowledge to all other related soft matter systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b04009 | DOI Listing |
Langmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFGels
December 2024
Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico.
This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina.
Gelatin and chondroitin sulfate are natural polymers with significant potential in the biomedical field, particularly for wound healing applications. They can form hydrogels that absorb exudates and exhibit anti-inflammatory and antioxidant properties. Silver nanoparticles (AgNPs) can be used as antibacterial agents in wound management.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Institute of Physical Chemistry, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany.
The adsorption of ellipsoidal colloidal particles on liquid interfaces induces interfacial deformation, resulting in anisotropic interface-mediated interactions and the formation of superstructures. Soft prolate-shaped microgels at the air-water interface offer an ideal model for studying spontaneous capillary-driven self-assembly due to their tunable aspect ratio, controlled functionality, and softness. These microgels consist of a polystyrene core surrounded by a cross-linked, fluorescently labeled poly([Formula: see text]-isopropylmethylacrylamide) shell.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
Microgel suspensions have garnered significant interest in fundamental research due to their phase transition between liquid-like to paste-like behaviors stemming from tunable interparticle and particle-solvent interactions. Particularly, stimuli-responsive microgels undergo faster volume changes in response to external stimuli in comparison to their bulk counterparts, while maintaining their structural integrity. Here, concentrated and diluted suspensions of poly(-isopropylacrylamide) (PNIPAm) microgels are dispersed to different packing fractions in water for the characterizations of temperature-responsive rheological responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!