A proteomic method combining two-dimensional polyacrylamide gel electrophoresis and tandem mass spectrometry was used to compare the hemolymph expression profiles of a beta-cypermethrin-resistant Blattella germanica L. strain (R) and a susceptible strain (S) after 24 h of beta-cypermethrin induction. The results showed that there were 42 differentially expressed proteins after induction of the R strain: 4 proteins were upregulated and 38 proteins were downregulated. One hundred one hemolymph proteins were differentially expressed after induction of the S strain: 53 proteins were upregulated and 48 proteins were downregulated. The identified proteins were mainly classified into the following categories: energy metabolism proteins such as arginine kinase and triose phosphate isomerase, detoxification-related proteins such as glutathione S-transferases (GSTs), signal molecule-regulated proteins such as nitric oxide synthase (NOS), and other proteins such as kinetic-related proteins and gene expression-related proteins. Several proteins show significant differences in response to short-term stress and long-term adaptation, and differential expression of these proteins reflects an overall change in cellular structure and metabolism associated with resistance to pyrethroid insecticides. In summary, our research has improved the understanding of the molecular mechanisms of beta-cypermethrin resistance in German cockroaches, which will facilitate the development of rational methods to improve the management of this pest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toz047 | DOI Listing |
Clin Chim Acta
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:
Trends Pharmacol Sci
January 2025
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, PR China. Electronic address:
Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.
View Article and Find Full Text PDFJ Dermatol Sci
January 2025
Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:
Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!