A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics. | LitMetric

Tumor therapy with replication competent viruses is an exciting approach to cancer eradication where viruses are engineered to specifically infect, replicate, spread and kill tumor cells. The outcome of tumor virotherapy is complex due to the variable interactions between the cancer cell and virus populations as well as the immune response. Oncolytic viruses are highly efficient in killing tumor cells in vitro, especially in a 2D monolayer of tumor cells, their efficiency is significantly lower in a 3D environment, both in vitro and in vivo. This indicates that the spatial dimension may have a major influence on the dynamics of virus spread. We study the dynamic behavior of a spatially explicit computational model of tumor and virus interactions using a combination of in vitro 2D and 3D experimental studies to inform the models. We determine the number of nearest neighbor tumor cells in 2D (median = 6) and 3D tumor spheroids (median = 16) and how this influences virus spread and the outcome of therapy. The parameter range leading to tumor eradication is small and even harder to achieve in 3D. The lower efficiency in 3D exists despite the presence of many more adjacent cells in the 3D environment that results in a shorter time to reach equilibrium. The mean field mathematical models generally used to describe tumor virotherapy appear to provide an overoptimistic view of the outcomes of therapy. Three dimensional space provides a significant barrier to efficient and complete virus spread within tumors and needs to be explicitly taken into account for virus optimization to achieve the desired outcome of therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6400333PMC
http://dx.doi.org/10.1371/journal.pcbi.1006773DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
tumor virotherapy
12
virus spread
12
tumor
11
outcome therapy
8
virus
6
cells
5
vitro
4
vitro silico
4
silico multidimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!