Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Analysis of dental radiographs is an important part of the diagnostic process in daily clinical practice. Interpretation by an expert includes teeth detection and numbering. In this project, a novel solution based on convolutional neural networks (CNNs) is proposed that performs this task automatically for panoramic radiographs.
Methods: A data set of 1352 randomly chosen panoramic radiographs of adults was used to train the system. The CNN-based architectures for both teeth detection and numbering tasks were analyzed. The teeth detection module processes the radiograph to define the boundaries of each tooth. It is based on the state-of-the-art Faster R-CNN architecture. The teeth numbering module classifies detected teeth images according to the FDI notation. It utilizes the classical VGG-16 CNN together with the heuristic algorithm to improve results according to the rules for spatial arrangement of teeth. A separate testing set of 222 images was used to evaluate the performance of the system and to compare it to the expert level.
Results: For the teeth detection task, the system achieves the following performance metrics: a sensitivity of 0.9941 and a precision of 0.9945. For teeth numbering, its sensitivity is 0.9800 and specificity is 0.9994. Experts detect teeth with a sensitivity of 0.9980 and a precision of 0.9998. Their sensitivity for tooth numbering is 0.9893 and specificity is 0.9997. The detailed error analysis showed that the developed software system makes errors caused by similar factors as those for experts.
Conclusions: The performance of the proposed computer-aided diagnosis solution is comparable to the level of experts. Based on these findings, the method has the potential for practical application and further evaluation for automated dental radiograph analysis. Computer-aided teeth detection and numbering simplifies the process of filling out digital dental charts. Automation could help to save time and improve the completeness of electronic dental records.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592580 | PMC |
http://dx.doi.org/10.1259/dmfr.20180051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!