Transductal and transepidermal diffusion are two distinct penetration routes of molecules administered via the nipple. To improve the therapeutic potential of this drug administration technique, drug penetration into the mammary ducts should be maximized, which may be accomplished through design optimization of drug delivery vehicles. In this study, we evaluated liposomes, ranging in size from 100 to 3000 nm, to improve ductal penetration of model fluorescent dyes using fluorescence microscopy and image analysis. Liposomes encapsulating a model fluorescent lipophilic dye, nile red, or hydrophilic dye, sulforhodamine B, were applied topically on porcine nipples for 6 h in vitro. Liposome encapsulation of sulforhodamine B significantly reduced the total amount of dye penetrating the nipple, while penetration of liposome-encapsulated nile red varied depending on vesicle size, as compared to their solution controls. However, the fluorescence intensity localized at the ductal epithelium was higher at extended nipple depths in tissues treated with liposomes versus dye solutions, suggesting a higher concentration of dye penetrating the nipple via the ducts. In contrast, the fluorescence intensity measured at the stratum corneum was reduced (sulforhodamine B) or unchanged (nile red) in nipples treated with liposomes versus dye solutions, suggesting a decrease or no change in dye penetration of the nipple via the stratum corneum. Furthermore, the limited penetration distance into the connective tissue beyond the ductal epithelium for both liposome-encapsulated nile red and sulforhodamine B suggests that liposomes remain intact over the 6 h duration of this study when penetrating through the ducts and enhance retention within the ductal lumen. However, the varied penetration profiles into the connective tissue beyond the stratum corneum between liposome-encapsulated nile red and sulforhodamine B suggests that the liposomes destabilize when penetrating the outer tissues layers of the nipple. Overall, liposomes, regardless of size, improved penetration into and retention within the mammary ducts, while limiting penetration into the stratum corneum, indicating their capacity to target the mammary ductal network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00037 | DOI Listing |
Anal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Laboratory of Laparoscopic Technology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China. Electronic address:
Background: Lactamase β (LACTB) inhibits the metastasis and progression of multiple malignant tumors. However, little is known about its role in endometrial cancer (EC). Our study aimed to investigate the function and potential molecular mechanism of LACTB in modulating EC progression.
View Article and Find Full Text PDFFront Pharmacol
December 2024
The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China.
Introduction: Metformin has shown benefits in treating metabolic dysfunction-associated steatotic liver disease (MASLD), but its mechanisms remain unclear. This study investigates miR-200a-5p's role in the AMPK/SERCA2b pathway to reduce liver fat accumulation and ER stress in MASLD.
Methods: A PA cell model induced by palmitic and oleic acids (2:1) was used to assess lipid accumulation via Oil Red O and Nile Red staining.
Arch Microbiol
December 2024
Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.
View Article and Find Full Text PDFACS Sens
December 2024
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!