Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
STAT family proteins are important mediators of cell signaling and represent therapeutic targets for the treatment of human diseases. Most STAT inhibitors target the protein-protein interaction domain, the SH2 domain, but specificity for a single STAT protein is often limited. Recently, we developed catechol bisphosphates as the first inhibitors of STAT5b demonstrated to exhibit a high degree of selectivity over the close homologue STAT5a. Here, we show that the amino acid in position 566 of the linker domain, not the SH2 domain, is the main determinant of specificity. Arg566 in wild-type STAT5b favors tight binding of catechol bisphosphates, while Trp566 in wild-type STAT5a does not. Amino acid 566 also determines the affinity for a tyrosine-phosphorylated peptide derived from the EPO receptor for STAT5a and STAT5b, demonstrating the functional relevance of the STAT5 linker domain for the adjacent SH2 domain. These results provide the first demonstration that a residue in the linker domain can determine the affinity of nonpeptidic small-molecule inhibitors for the SH2 domain of STAT proteins. We propose targeting the interface between the SH2 domain and linker domain as a novel design approach for the development of potent and selective STAT inhibitors. In addition, our data suggest that the linker domain could contribute to the enigmatically divergent biological functions of the two STAT5 proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.9b00137 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!