CT Angiography of the Aorta: Contrast Timing by Using a Fixed versus a Patient-specific Trigger Delay.

Radiology

From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistr 100, CH-8091 Zurich, Switzerland (R.H., M.E., T.P., B.K., H.A.); Siemens Healthcare, Forchheim, Germany (R.G., B.S., T.G.F.); Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland (K.R.); and Department of Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland (M.L.).

Published: May 2019

Background Optimal timing of the CT scan relative to the contrast media bolus remains a challenging task given the shorter scan durations of modern CT scanners, as well as interpatient variability. Purpose To compare contrast opacification in CT angiography of the aorta between a cohort with fixed trigger delay and a cohort with patient-specific individualized trigger delay for contrast media timing with bolus tracking. Materials and Methods In this prospective study (January-August 2018), CT angiography of the thoracoabdominal aorta with bolus tracking was performed in two different study cohorts: one with a fixed trigger delay of 4 seconds (fixed cohort) and one with a patient-specific trigger delay (individualized cohort). All CT and contrast media protocol parameters were kept identical among cohorts. Objective image quality was evaluated by one reader; two readers assessed subjective image quality. Student test was used to test for differences in mean attenuation; the Wilcoxon-Mann-Whitney test was used to test for differences in noise, contrast-to-noise ratio, and subjective image quality. Results The fixed cohort had 108 study participants (16 women; mean age ± standard deviation, 72 years ± 10); the individualized cohort had 108 participants (16 women; mean age, 72 years ± 12). The trigger delay in the individualized cohort ranged from 6.4-11.3 seconds (mean, 9.2 seconds). There was higher overall attenuation in the individualized cohort than in the fixed cohort (486 HU ± 92 for individualized vs 438 HU ± 99 for fixed; < .001), with increasing differences from the aortic arch (8 HU) to the iliac arteries (95 HU). The regression model indicated uniform attenuation in the individualized cohort and decreasing attenuation in the fixed cohort (decrease of 87 HU by the iliac arteries; < .001). There was no difference between cohorts for image noise (20 vs 19; = .41), but contrast-to-noise ratio (21 vs 19; = .04) and subjective image quality were higher in the individualized cohort than in the fixed cohort (excellent or good image quality, 100% vs 67%; < .001). Conclusion Compared with a fixed delay time after bolus tracking, a patient-specific individualized trigger delay improves image quality and provides uniform contrast attenuation for CT angiography of the aorta. ©RSNA, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2019182223DOI Listing

Publication Analysis

Top Keywords

trigger delay
28
individualized cohort
24
image quality
24
fixed cohort
20
cohort
13
angiography aorta
12
contrast media
12
cohort fixed
12
bolus tracking
12
subjective image
12

Similar Publications

Coming home: how visually navigating ants (Myrmecia spp.) pinpoint their nest.

J Exp Biol

January 2025

Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra ACT2601, Australia.

Visually navigating Myrmecia foragers approach their nest from distances up to 25 m along well-directed paths, even from locations they have never been before ( Narendra et al., 2013). However, close to the nest, they often spend some time pinpointing the nest entrance, sometimes missing it by centimetres.

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

Background: Nonocclusive mesenteric ischemia (NOMI), a subtype of acute mesenteric ischemia, is primarily caused by mesenteric arterial vasoconstriction and decreased vascular resistance, leading to impaired intestinal perfusion.Commonly observed after cardiac surgery, NOMI affects older patients with cardiovascular or systemic diseases, accounting for 20-30% of acute mesenteric ischemia cases with a mortality rate of ∼50%. This review explores NOMI's pathophysiology, clinical implications in aortic dissection, and the unmet needs in diagnosis and management, emphasizing its prognostic significance.

View Article and Find Full Text PDF

The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway.

Cell Rep

January 2025

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.

View Article and Find Full Text PDF

Hymenoscyphus fraxineus, the causal agent of Ash Dieback (ADB), has been introduced to eastern Europe in the 1990s from where it spread causing decline in European ash populations. However, the genetic basis of the molecular response in tolerant and susceptible ash trees to this disease is still largely unknown. We performed RNA-sequencing to study the transcriptomic response to the disease in four ash genotypes (ADB-tolerant FAR3 and FS36, and ADB-susceptible UW1 and UW2), during a time-course of 7, 14, 21, and 28 days post-inoculation, including mock-inoculated trees as control samples for each sampling time point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!