Comparative expression analysis of let-7 microRNAs during ovary development in Megalobrama amblycephala.

Fish Physiol Biochem

College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.

Published: June 2019

As a critical regulator of gene expression, let-7 family miRNAs have been reported to be involved in multiple physiological processes. In this study, in order to elucidate the putative regulatory effect of let-7 miRNAs during fish gonadal development and to identify which member is crucial for this regulation, the expression of ten members including let-7a/b/c/d/e/f/g/h/i/j were quantified in ovary, pituitary, and brain tissues during the different ovarian developmental stages of blunt snout bream Megalobrama amblycephala. According to the data from analysis of expression patterns, let-7a showed the highest expression value in almost all the tested ovaries, pituitaries, and brains, with let-7b and let-7d moderately expressed, following by other let-7 miRNAs. In terms of the differential expression levels of ten let-7 miRNAs at each developmental stage, the results showed that let-7a/b/d/f/h expression gradually increased during the ovary development from stage I to V and dropped significantly at the phase VI in ovary tissues. However, the expression of let-7a/b/e/f in pituitary increased during the ovary development from stage I to IV and declined at stage V. Among all the let-7 miRNAs, let-7a/b/d had the highest expression and their expression patterns were consistent with the gonad development of M. amblycephala. Furthermore, the mostly predicted target genes of let-7 miRNAs are significantly enriched in signaling pathways closely related to gonadal development through KEGG enrichment analysis. These results indicate that let-7 miRNA members, especially let-7a/b/d, may play important roles in the regulation of ovary development in M. amblycephala through negatively regulating expression of their target genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-019-00624-7DOI Listing

Publication Analysis

Top Keywords

let-7 mirnas
20
ovary development
16
expression
10
let-7
8
megalobrama amblycephala
8
gonadal development
8
expression patterns
8
highest expression
8
increased ovary
8
development stage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!