For large scale production of clonal plants, somatic embryogenesis (SE) has many advantages over other clonal propagation methods such as the rooting of cuttings. In particular, the SE process is more suited to scale up and automation, thereby reducing labor costs and increasing the reliability of the production process. Furthermore, the plants resulting from SE closely resemble those from seeds, as somatic embryos, like zygotic (seed) embryos, develop with good connection between root and shoot, and without the plagiotropism often associated with propagation by cuttings. For practical purposes in breeding programs and for deployment of elite clones, it is valuable that a virtually unlimited number of SE plants can be generated from one original seed embryo; and SE cultures (clones) can be cryostored for at least 20 years, allowing long-term testing of clones. To date, there has however been limited use of SE for large-scale plant production mainly because without automation it is labor-intensive. Development of automation is particularly attractive in countries with high labor costs, where conifer forestry is often of great economic importance. Various approaches for automating SE processes are under investigation and the progress is reviewed here, with emphasis on conifers. These approaches include simplification of culture routines with preference for liquid rather than solid cultures, use of robotics and automation for the harvest of selected individual mature embryos, followed by automated handling of germination and subsequent planting. Different approaches to handle the processes of somatic embryogenesis in conifers are outlined below, followed by an update on efforts to automate the different steps, which are nearing an operational stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388443PMC
http://dx.doi.org/10.3389/fpls.2019.00109DOI Listing

Publication Analysis

Top Keywords

somatic embryogenesis
12
plant production
8
emphasis conifers
8
labor costs
8
automation
5
automation scale
4
somatic
4
scale somatic
4
embryogenesis commercial
4
commercial plant
4

Similar Publications

Background: Kaposiform lymphangiomatosis (KLA) is a complex lymphatic anomaly associated with a somatic activating NRAS p.Q61R (NRAS) mutation. KLA is characterized by malformed lymphatic vessels that can lead to effusions and coagulopathy.

View Article and Find Full Text PDF

Wilms tumor (WT) is the most common kidney cancer in infants and young children. The determination of the clonality of bilateral WTs is critical to the treatment, because lineage-independent and metastatic tumors may require different treatment strategies. Here we found synchronous bilateral WT (n = 24 tumors from 12 patients) responded differently to preoperative chemotherapy.

View Article and Find Full Text PDF

Mechano-regulation of germline development, maintenance, and differentiation.

BBA Adv

November 2024

Department of Biology, Trivedi School of Biosciences, Ashoka University, No. 2 Rajiv Gandhi Educational City, Sonipat, Haryana 131029, India.

Biochemical signaling arising from mechanical force-induced physical changes in biological macromolecules is a critical determinant of key physiological processes across all biological lengths and time scales. Recent studies have deepened our understanding of how mechano-transduction regulates somatic tissues such as those in alveolar, gastrointestinal, embryonic, and skeleto-muscular systems. The germline of an organism has a heterogeneous composition - of germ cells at different stages of maturation and mature gametes, often supported and influenced by their accessory somatic tissues.

View Article and Find Full Text PDF

Background: Pinus thunbergii is an economically important conifer species that plays a fundamental role in forest ecosystems. However, the population has declined dramatically in recent years as a result of the pine wilt disease outbreak. Thus, developing pine wilt-resistant P.

View Article and Find Full Text PDF

Low-input CUT&Tag for efficient epigenomic profiling of zebrafish stage I oocytes.

Front Cell Dev Biol

December 2024

Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.

Histone modification signatures mark sites of transcriptional regulatory elements and regions of gene activation and repression. These sites vary among cell types and undergo dynamic changes during development and in diseases. Oocytes produce numerous maternal factors essential for early embryonic development, which are significantly influenced by epigenetic modifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!