IRE1 is an endoplasmic reticulum (ER) bound transmembrane bifunctional kinase and endoribonuclease protein crucial for the unfolded protein response (UPR) signaling pathway. Upon ER stress, IRE1 homodimerizes, oligomerizes and autophosphorylates resulting in endoribonuclease activity responsible for excision of a 26 nucleotide intron from the X-box binding protein 1 (XBP1) mRNA. This unique splicing mechanism results in activation of the XBP1s transcription factor to specifically restore ER stress. Small molecules targeting the reactive lysine residue (Lys907) in IRE1α's RNase domain have been shown to inhibit the cleavage of XBP1 mRNA. Crystal structures of murine IRE1 in complex with covalently bound hydroxyl aryl aldehyde (HAA) inhibitors show that these molecules form hydrophobic interactions with His910 and Phe889, a hydrogen bond with Tyr892 and an indispensable Schiff-base with Lys907. The availability of such data prompted interest in exploring structure-based drug design as a strategy to develop new covalently binding ligands. We extensively evaluated conventional and covalent docking for drug discovery targeting the catalytic site of the RNase domain. The results indicate that neither computational approach is fully successful in the current case, and we highlight herein the potential and limitations of the methods for the design of novel IRE1 RNase binders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399222 | PMC |
http://dx.doi.org/10.1038/s41598-019-39939-z | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
The combination of photosensitizers (PSs) and nanomaterials is a widely used strategy to enhance PS efficacy and broaden their applicability. However, the current nanocarrier-based delivery strategies focus on conventional PSs, neglecting the critical issue of PS phototoxicity. In this study, DHUOCl-25, an activatable PS (aPS) activated by hypochlorous acid, is synthesized by combining a silicon source structure and an activation unit.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
The ability to identify unknown risks is the key to improving the level of food safety. However, the conventional nontargeted screening methods for new contaminant identification and risk assessment remain difficult work. Herein, a toxic-oriented screening platform based on high-expression epidermal growth factor receptor HEK293 cell membrane-coated magnetic nanoparticles (EGFR/MNPs) was first used for the discovery of unknown contaminants from food samples.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn institution, An der Immenburg 4, Bonn 53121, Germany.
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFJ Biosci Bioeng
January 2025
Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:
The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!