Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399450PMC
http://dx.doi.org/10.1038/s41467-019-08844-4DOI Listing

Publication Analysis

Top Keywords

microbial species
8
microbial
5
microbial abundance
4
abundance activity
4
activity population
4
population genomic
4
genomic profiling
4
profiling motus2
4
motus2 metagenomic
4
metagenomic sequencing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!