Softness sensing and learning in larvae.

J Exp Biol

Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan

Published: April 2019

Mechanosensation provides animals with important sensory information in addition to olfaction and gustation during feeding behavior. Here, we used larvae to investigate the role of softness sensing in behavior and learning. In the natural environment, larvae need to dig into soft foods for feeding. Finding foods that are soft enough to dig into is likely to be essential for their survival. We report that larvae can discriminate between different agar concentrations and prefer softer agar. Interestingly, we show that larvae on a harder surface search for a softer surface using memory associated with an odor, and that they evaluate foods by balancing softness and sweetness. These findings suggest that larvae integrate mechanosensory information with chemosensory input while foraging. Moreover, we found that the larval preference for softness is affected by genetic background.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.196329DOI Listing

Publication Analysis

Top Keywords

softness sensing
8
larvae
6
softness
4
sensing learning
4
learning larvae
4
larvae mechanosensation
4
mechanosensation animals
4
animals sensory
4
sensory addition
4
addition olfaction
4

Similar Publications

The potential applicability of the C nanocage and its boron nitride-doped analogs (CBN and CBN) as pyrazinamide (PA) carriers was investigated using density functional theory. Geometry optimization and energy calculations were performed using the B3LYP functional and 6-31G(d) basis set. Besides, dispersion-corrected interaction energies were calculated at CAM (Coulomb attenuated method)-B3LYP/6-31G(d,p) and M06-2X/6-31G(d,p) levels of theory.

View Article and Find Full Text PDF

Multimaterial cryogenic printing of three-dimensional soft hydrogel machines.

Nat Commun

January 2025

Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.

View Article and Find Full Text PDF

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

Acc Chem Res

January 2025

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.

View Article and Find Full Text PDF

. The perception of softness plays a key role in interactions with various objects, both in the real world and in virtual/augmented reality (VR/AR) systems. The latter can be enriched with haptic feedback on virtual objects' softness to improve immersivity and realism.

View Article and Find Full Text PDF

In-Ear Electronics with Mechanical Adaptability for Physiological Sensing.

Adv Healthc Mater

December 2024

Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.

Significant developments have been made in the field of wearable healthcare by utilizing soft materials for the construction of electronic sensors. However, the lack of adaptability to complex topologies, such as ear canal, results in inadequate sensing performance. Here, we report an in-ear physiological sensor with mechanical adaptability, which softens upon contact with the ear canal's skin, thus reducing the sensor-skin mechanical mismatch and interface impedance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!