Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation.

EMBO J

Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden

Published: April 2019

Small RNAs post-transcriptionally regulate many processes in bacteria. Base-pairing of sRNAs near ribosome-binding sites in mRNAs inhibits translation, often requiring the RNA chaperone Hfq. In the canonical model, Hfq simultaneously binds sRNAs and mRNA targets to accelerate pairing. Here, we show that the sRNAs OmrA and OmrB inhibit translation of the diguanylate cyclase DgcM (previously: YdaM), a player in biofilm regulation. In OmrA/B repression of , Hfq is not required as an RNA interaction platform, but rather unfolds an inhibitory RNA structure that impedes OmrA/B binding. This restructuring involves distal face binding of Hfq and is supported by RNA structure mapping. A corresponding mutant protein cannot support inhibition and ; proximal and rim mutations have negligible effects. Strikingly, OmrA/B-dependent translational inhibition is restored, in complete absence of Hfq, by a deoxyoligoribonucleotide that base-pairs to the biochemically mapped Hfq site in mRNA We suggest that Hfq-dependent RNA structure remodeling can promote sRNA access, which represents a mechanism distinct from an interaction platform model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443205PMC
http://dx.doi.org/10.15252/embj.2018101199DOI Listing

Publication Analysis

Top Keywords

rna structure
12
interaction platform
8
hfq
6
rna
5
hfq-dependent mrna
4
mrna unfolding
4
unfolding promotes
4
promotes srna-based
4
srna-based inhibition
4
inhibition translation
4

Similar Publications

Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.

View Article and Find Full Text PDF

The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. mA methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea.

View Article and Find Full Text PDF

DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and Electron Cryotomography.

JACS Au

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China.

DNA nanostructures present new opportunities as Nanotags for electron microscopy (EM) imaging, leveraging their high programmability, unique shapes, biomolecule conjugation capability, and stability compatible with standard cryogenic sample preparation protocols. This perspective highlights the potential of DNA Nanotags to enable high-throughput multiplexed EM analysis and facilitate particle identification for cryogenic electron tomography (cryo-ET). Meanwhile, applying Nanotags in live-cell environments requires the efficient cellular uptake of intact structures and successful cytosolic migration.

View Article and Find Full Text PDF

Consistent features observed in structural probing data of eukaryotic RNAs.

NAR Genom Bioinform

March 2025

Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan.

Understanding RNA structure is crucial for elucidating its regulatory mechanisms. With the recent commercialization of messenger RNA vaccines, the profound impact of RNA structure on stability and translation efficiency has become increasingly evident, underscoring the importance of understanding RNA structure. Chemical probing of RNA has emerged as a powerful technique for investigating RNA structure in living cells.

View Article and Find Full Text PDF

Directed evolution of peroxidase DNAzymes by a function-based approach.

Biol Methods Protoc

December 2024

School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.

Peroxidase DNAzymes are single-stranded, stable G-quadruplexes structures that exhibit catalytic activity with cofactor hemin. This class of DNAzymes offers several advantages over traditional protein and RNA catalysts, including thermal stability, resistance to hydrolysis, and easy of synthesis in the laboratory. However, their use in medicine, biology, and chemistry is limited due to their low catalytic rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!