Animal food wastes are a concern due to the large amounts of commercial food required for model animals during the biological and biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solve or reduce this challenge. Microalgae have been demonstrated to be suitable for both human consumption and animal feed. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated. Characteristics including the fly locomotor activity, motor pattern, feeding behavior, lifespan and body weight were assessed. Results showed that compared to control, the flies fed on 80% microalga (80-flies) in the total weight (w/w) had the double increased apparent step size, while both 60-flies and 80-flies exhibited longer travel distances (60%: 27.77 ± 1.99 cm; 80%: 31.50 ± 3.70 cm) most likely due to the starvation and varied serotonin levels in flies fed on high percentages microalgae. Subsequently, 40-flies exhibited less optimal growth performance with decreased body weights (0.51 ± 0.006 mg vs 0.60 ± 0.005 mg for control) and shorter mean lifespan (36 days vs 55.8 days for control. However, 20-flies showed no statistical differences in all parameters tested with respect to control flies, indicating that 20% microalgae treatment did not greatly change the primary food component such as carbohydrate which might play a critical role in fly performance. Therefore, the inclusion of 20% microalgae could be an alternative to fly standard food without compromising fly physiological performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.02.414 | DOI Listing |
Biol Open
January 2025
Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA.
The gut microbiome, which is composed of bacteria, viruses, and fungi, and is involved in multiple essential physiological processes, changes measurably as a person ages, and can be associated with negative health outcomes. Microbiome transplants have been proposed as a method to improve gut function and reduce or reverse multiple disorders, including age-related diseases. Here, we take advantage of the laboratory model organism, Drosophila melanogaster, to test the effects of transplanting the microbiome of a young fly into middle-aged flies, across multiple genetic backgrounds and both sexes, to test whether age-related lifespan could be increased, and late-life physical health declines mitigated.
View Article and Find Full Text PDFArch Insect Biochem Physiol
January 2025
College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Zinc homeostasis contributes significantly to numerous physiological processes. Drosophila ZnT35C protein, a zinc transporter encoded by CG3994, is chiefly located on the cell membrane and facilitates the transport of zinc from the cytoplasm to the extracellular space to sustain zinc homeostasis within the organism. Previous studies about ZnT35C have involved diverse structures such as the Malpighian tubules, adult brain, and sensory nervous system.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.
View Article and Find Full Text PDFEmbryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit.
View Article and Find Full Text PDFUnlabelled: The rapid growth that occurs during larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!