Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives.

Sci Total Environ

Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico. Electronic address:

Published: June 2019

Industries are the paramount driving force for the economic and technological development of society. However, the flourishing industrialization and unimpeded growth of current production unit's result in widespread environmental pollution due to increased discharge of wastes loaded with baleful, hazardous, and carcinogenic contaminants. Physicochemical-based remediation means are costly, create a secondary disposal problem and remain inadequate for pollution mitigating because of the continuous emergence of new recalcitrant pollutants. Due to eco-friendly, social acceptance, and lesser health hazards, microbial bioremediation has received considerable global attention for pollution abatement. Moreover, with the recent advancement in biotechnology and microbiology, genetically engineered bacteria with high ability to remove environmental pollutants are widely used in the fields of environmental restoration, resulting in the bioremediation in a more viable and eco-friendly way. This review summarized the advantages of genetically engineered bacteria and their application in the treatment of a wide variety of environmental contaminants such as synthetic dyestuff, heavy metal, petroleum hydrocarbons, polychlorinated biphenyls, phenazines and agricultural chemicals which will include herbicides, pesticides, and fertilizers. Considering the risk of genetic material exchange by using genetically engineered bacteria, the challenges and limitations associated with the application of recombinant bacteria on contaminated sites are also discussed. An integrated microbiological, biological and ecological acquaintance accompanied by field engineering designs are the desired features for effective in situ bioremediation of hazardous waste polluted sites by recombinant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.390DOI Listing

Publication Analysis

Top Keywords

genetically engineered
16
engineered bacteria
16
environmental pollution
8
recombinant bacteria
8
bacteria
6
mitigation environmental
4
pollution
4
genetically
4
pollution genetically
4
engineered
4

Similar Publications

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Identifying why complex tissue regeneration is present or absent in specific vertebrate lineages has remained elusive. One also wonders whether the isolated examples where regeneration is observed represent cases of convergent evolution or are instead the product of phylogenetic inertia from a common ancestral program. Testing alternative hypotheses to identify genetic regulation, cell states, and tissue physiology that explain how regenerative healing emerges in some species requires sampling multiple species among which there is variation in regenerative ability across a phylogenetic framework.

View Article and Find Full Text PDF

Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen.

PLoS Pathog

January 2025

Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.

Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!