Introduction: Takotsubo syndrome is an acute heart failure syndrome often preceded by a trigger factor of physical or emotional origin, although the proportion is unclear. The aim of the present study was to determine how common different trigger factors are in takotsubo syndrome divided by sex and age in women.
Material And Methods: The study consisted of a systematic review of all available case reports in PubMed and Web of Science up to March 2018. Trigger factors were categorized into physical and emotional trigger factors.
Results: Males had to a higher degree experienced a trigger factor (92.6%) compared to females (81.9%, p < .001). Physical trigger factors were most common (67.3%). Males had to a higher degree experienced a physical trigger factor (85.7%) compared to females (63.5%, p < .001). Females ≤50 years of age had to a higher degree experienced a trigger factor (90.8%) compared to females >50 years of age (79.2%, p < .001). Additionally, females ≤50 years of age had to a higher degree experienced a physical trigger factor (75.6%) compared to females >50 years of age (59.3%, p < .01).
Conclusion: A physical trigger factor is more common than an emotional trigger factor in takotsubo syndrome. Physical triggers includes drugs, surgery and central nervous system conditions. Furthermore, females ≤50 years of age and males more often have an evident trigger factor and it is more often physical, compared to the most common patient, a female >50 years of age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejim.2019.02.017 | DOI Listing |
Int J Legal Med
January 2025
Faculty of Medicine, Lucian Blaga University of Sibiu, Sibiu, 550169, Romania.
The burnout phenomenon is a subject of considerable interest due to its impact on both employee well-being and scientific inquiry. Workplace factors, both intrinsic and extrinsic, play a pivotal role in its development, often leading to job dissatisfaction and heightened burnout risk. Chronic stress and burnout induce significant dysregulation in the autonomic nervous system and hormonal pathways, alongside structural brain changes.
View Article and Find Full Text PDFJ Patient Rep Outcomes
January 2025
Psycho-Oncology Cooperative Research Group, School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, 2006, Australia.
Purpose: Informal caregivers of people with high grade glioma (HGG) often have high levels of unmet support needs. Routine screening for unmet needs can facilitate appropriate and timely access to supportive care. We aimed to develop a brief screening tool for HGG caregiver unmet needs, based on the Supportive Care Needs Survey-Partners & Caregivers (SCNS-P&C).
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.
View Article and Find Full Text PDFCells
January 2025
Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes Vej5, 2200 Copenhagen, Denmark.
Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Objective: Approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). Epidemiological data have identified traumatic brain injury (TBI) as an exogenous risk factor for ALS; however, the mechanisms by which TBI may worsen SOD1 ALS remain largely undefined.
Methods: We sought to determine whether repetitive TBI (rTBI) accelerates disease onset and progression in the transgenic SOD1 mouse ALS model, and whether loss of the primary regulator of axonal degeneration sterile alpha and TIR motif containing 1 (Sarm1) mitigates the histological and behavioral pathophysiology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!