Background: The molecular basis of the incipient stage of speciation is still poorly understood. Cichlid fish species in Lake Victoria are a prime example of recent speciation events and a suitable system to study the adaptation and reproductive isolation of species.

Results: Here, we report the pattern of genomic differentiation between two Lake Victoria cichlid species collected in sympatry, Haplochromis pyrrhocephalus and H. sp. 'macula,' based on the pooled genome sequences of 20 individuals of each species. Despite their ecological differences, population genomics analyses demonstrate that the two species are very close to a single panmictic population due to extensive gene flow. However, we identified 21 highly differentiated short genomic regions with fixed nucleotide differences. At least 15 of these regions contained genes with predicted roles in adaptation and reproductive isolation, such as visual adaptation, circadian clock, developmental processes, adaptation to hypoxia, and sexual selection. The nonsynonymous fixed differences in one of these genes, LWS, were reported as substitutions causing shift in absorption spectra of LWS pigments. Fixed differences were found in the promoter regions of four other differentially expressed genes, indicating that these substitutions may alter gene expression levels.

Conclusions: These diverged short genomic regions may have contributed to the differentiation of two ecologically different species. Moreover, the origins of adaptive variants within the differentiated regions predate the geological formation of Lake Victoria; thus Lake Victoria cichlid species diversified via selection on standing genetic variation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399900PMC
http://dx.doi.org/10.1186/s12862-019-1387-2DOI Listing

Publication Analysis

Top Keywords

lake victoria
20
victoria cichlid
12
cichlid species
12
genomic differentiation
8
differentiation lake
8
haplochromis pyrrhocephalus
8
pyrrhocephalus 'macula'
8
adaptation reproductive
8
reproductive isolation
8
short genomic
8

Similar Publications

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.

View Article and Find Full Text PDF

GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19.

Nature

May 2023

Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown to be highly efficient for discovery of genetic associations. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases).

View Article and Find Full Text PDF
Article Synopsis
  • Critical COVID-19 is linked to immune system damage in the lungs, showing that genetics play a key role in severe cases requiring hospitalization.
  • The GenOMICC study analyzes the genomes of 7,491 critically ill patients against 48,400 controls, uncovering 23 genetic variants that increase the risk for severe COVID-19, including new associations related to immune response and blood type.
  • The findings suggest that both viral replication and heightened lung inflammation contribute to critically ill cases, highlighting potential genetic targets for new treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!