Moment Dynamics of Zirconia Particle Formation for Optimizing Particle Size Distribution.

Nanomaterials (Basel)

Institute for Systems Theory and Automatic Control, University of Stuttgart, 70569 Stuttgart, Germany.

Published: March 2019

We study the particle formation process of Zirconia ( ZrO 2 )-based material. With a model-based description of the particle formation process we aim for identifying the main growth mechanisms for different process parameters. After the introduction of a population balance based mathematical model, we derive the moment dynamics of the particle size distribution and compare the model to experimental data. From the fitted model we conclude that growth by molecular addition of Zr-tetramers or Zr-oligomers to growing particles as well as size-independent particle agglomeration takes place. For the purpose of depositing zirconia-based material (ZrbM) on a substrate, we determine the optimal process parameters such that the mineralization solution contains preferably a large number of nanoscaled particles leading to a fast and effective deposition on the substrate. Besides the deposition of homogeneous films, this also enables mineralization of nanostructured templates in a bioinspired mineralization process. The developed model is also transferable to other mineralization systems where particle growth occurs through addition of small molecular species or particle agglomeration. This offers the possibility for a fast determination of process parameters leading to an efficient film formation without carrying out extensive experimental investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474015PMC
http://dx.doi.org/10.3390/nano9030333DOI Listing

Publication Analysis

Top Keywords

particle formation
12
process parameters
12
moment dynamics
8
particle
8
particle size
8
size distribution
8
formation process
8
particle agglomeration
8
process
6
dynamics zirconia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!