Personalized medicine is focused on research disciplines which contribute to the individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1%⁻3% of deaths. Further improvement of treatment protocols is needed through the implementation of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies, including microarrays and next-generation sequencing, have provided an enormous amount of molecular data with the potential to be implemented in childhood ALL treatment protocols. In the current review, we summarized the contribution of these novel technologies to the pharmacogenomics and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and methotrexate. Big data was generated using high-throughput technologies, but their implementation in clinical practice is poor. Research efforts should be focused on data analysis and designing prediction models using machine learning algorithms. Bioinformatics tools and the implementation of artificial i Lack of association of the CEP72 rs924607 TT genotype with intelligence are expected to open the door wide for personalized medicine in the clinical practice of childhood ALL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471971 | PMC |
http://dx.doi.org/10.3390/genes10030191 | DOI Listing |
Psychol Med
December 2023
Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
Psychotropic medication efficacy and tolerability are critical treatment issues faced by individuals with psychiatric disorders and their healthcare providers. For some people, it can take months to years of a trial-and-error process to identify a medication with the ideal efficacy and tolerability profile. Current strategies (e.
View Article and Find Full Text PDFInt J Mol Sci
April 2023
Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece.
The emergence of high-throughput approaches has had a profound impact on personalized medicine, evolving the identification of inheritable variation to trajectory analyses of transient states and paving the way for the unveiling of response biomarkers. The utilization of the multi-layered pharmaco-omics data, including genomics, transcriptomics, proteomics, and relevant biological information, has facilitated the identification of key molecular biomarkers that can predict the response to therapy, thereby optimizing treatment regiments and providing the framework for a tailored treatment plan. Despite the availability of multiple therapeutic options for chronic diseases, the highly heterogeneous clinical response hinders the alleviation of disease signals and exacerbates the annual burden and cost of hospitalization and drug regimens.
View Article and Find Full Text PDFEur Neuropsychopharmacol
January 2022
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain. Electronic address:
Pharmacotranscriptomics is a still very new field of research that has just begun to flourish and promises to enable target discovery, inform biomarker and evaluate drug efficacy beyond pharmacogenomics. The aim of this review is to provide a critical overview of the biological foundations of transcriptomics, methodological approaches to transcriptomic studies, and their advantages and limitations. We present the different RNA species (rRNAs, tRNAs, mtRNAs, snRNAs, scRNAs, mRNAs, ncRNAs, LINE and SINE transcripts, circular RNAs, piRNAs, miRNAs, snoRNAs) and their potential for pharmacotranscriptomic studies as markers to predict treatment response in neurological and psychiatric disorders.
View Article and Find Full Text PDFGenes (Basel)
December 2020
Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia.
The human serine protease serine 2 TMPRSS2 is involved in the priming of proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a possible target for COVID-19 therapy. The TMPRSS2 gene may be co-expressed with SARS-CoV-2 cell receptor genes angiotensin-converting enzyme 2 (ACE2) and Basigin (BSG), but only TMPRSS2 demonstrates tissue-specific expression in alveolar cells according to single-cell RNA sequencing data. Our analysis of the structural variability of the TMPRSS2 gene based on genome-wide data from 76 human populations demonstrates that a functionally significant missense mutation in exon 6/7 in the TMPRSS2 gene is found in many human populations at relatively high frequencies, with region-specific distribution patterns.
View Article and Find Full Text PDFNucleic Acids Res
January 2021
Beijing University of Chinese Medicine, Chaoyang District, Beijing 100029, China.
Pharmacotranscriptomics has become a powerful approach for evaluating the therapeutic efficacy of drugs and discovering new drug targets. Recently, studies of traditional Chinese medicine (TCM) have increasingly turned to high-throughput transcriptomic screens for molecular effects of herbs/ingredients. And numerous studies have examined gene targets for herbs/ingredients, and link herbs/ingredients to various modern diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!