A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of partial nitrification endogenous denitrification and phosphorus removal system: Balancing competition between phosphorus and glycogen accumulating organisms to enhance nitrogen removal without initiating phosphorus removal deterioration. | LitMetric

Improvement of partial nitrification endogenous denitrification and phosphorus removal system: Balancing competition between phosphorus and glycogen accumulating organisms to enhance nitrogen removal without initiating phosphorus removal deterioration.

Bioresour Technol

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Published: June 2019

The novel partial nitrification endogenous denitrification and phosphorus removal (PNEDPR) process can achieve deep-level nutrient removal from low carbon/nitrogen municipal wastewater without extra carbons. However, its performance is limited by long hydraulic retention time (HRT) and low specific endogenous denitrification rate (r). This study aimed at investigating the effects of two improving strategies on PNEDPR. One was decreasing both anaerobic and anoxic reaction time for shortening HRT from 55 h to 17.5 h. The other was temporarily discharging orthophosphate-rich supernatant for balancing the competition between phosphorus and glycogen accumulating organisms to further raise r without deterioration of phosphorus removal. Results revealed that, desirable nutrient removal was obtained, as average effluent concentrations of total nitrogen and orthophosphate were 8.4 and 0.5 mg/L with their average removal efficiencies of 86.8% and 90.9%. High-throughput sequencing analysis revealed that, Candidatus_Competibacter conducted nitrogen removal endogenous denitrification and Candidatus_Accumulibacter and Tetrasphaera ensured phosphorus removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.02.109DOI Listing

Publication Analysis

Top Keywords

phosphorus removal
20
endogenous denitrification
16
removal
10
partial nitrification
8
nitrification endogenous
8
denitrification phosphorus
8
balancing competition
8
competition phosphorus
8
phosphorus glycogen
8
glycogen accumulating
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!