Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior.

Acta Biomater

Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France. Electronic address:

Published: April 2019

AI Article Synopsis

  • * Non-doped and Mg-doped β-TCP samples were tested in an acidic environment to simulate conditions near osteoclasts, revealing that the orientation of crystals affects how quickly they dissolve.
  • * The research showed that Mg-doping decreased the dissolution rate and surface etching compared to non-doped samples, providing insights on how to tailor the properties of calcium phosphate materials for better bone integration.

Article Abstract

The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (β-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered β-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of β-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. β-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped β-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping β-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.02.045DOI Listing

Publication Analysis

Top Keywords

β-tcp samples
12
resorption
10
grain orientation
8
doping β-tricalcium
8
β-tricalcium phosphate
8
resorption behavior
8
calcium phosphate
8
crystal orientation
8
intra-crystalline pillars
8
electron backscatter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!