Objective: Low-density lipoprotein cholesterol (LDL-C) is the hallmark of atherosclerotic cardiovascular diseases. The hepatic LDL receptor (LDLR) plays an important role in clearance of circulating LDL-C. PCSK9 facilitates degradation of LDLR in the lysosome and antagonizing PCSK9 has been successfully used in the clinic to reduce blood LDL-C level. Here we identify a new player that modulates LDLR interaction with PCSK9, thus controlling LDLR degradation and cholesterol homeostasis.
Methods: The blood LDL-C and cholesterol levels were analyzed in mice with hepatic deletion of Paqr3 gene. The half-life of LDLR was analyzed in HepG2 cells. The interaction of PAQR3 with LDLR and PCSK9 was analyzed by co-immunoprecipitation and immunofluorescent staining.
Results: The blood LDL-C and total cholesterol levels in the mice with hepatic deletion of Paqr3 gene were significantly lower than the control mice after feeding with high-fat diet (p < 0.001 and p < 0.05 respectively). The steady-state level of LDLR protein is elevated by Paqr3 knockdown/deletion and reduced by PAQR3 overexpression. The half-life of LDLR protein is increased by Paqr3 knockdown and accelerated by PAQR3 overexpression. PAQR3 interacts with the β-sheet domain of LDLR and the P-domain of PCSK9 respectively. In addition, PAQR3 can be localized in early endosomes and colocalized with LDLR, PCSK9 and LDL. Mechanistically, PAQR3 enhances the interaction between LDLR and PCSK9.
Conclusion: Our study reveals that PAQR3 plays a pivotal role in controlling hepatic LDLR degradation and blood LDL-C level via modulating LDLR-PCSK9 interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2019.02.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!