Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Creating highly stable inorganic perovskite nanocrystals (CsPbX, where X = Cl, Br, and I) with excellent optical performance is challenging because their optical properties depend on their ionic structure and its inherent defects. Here, we present a facile and effective synthesis using a nanoconfinement strategy to grow Mn-doped CsPbCl nanocrystals embedded in dendritic mesoporous silica nanospheres (MSNs). The resulting nanocomposite is abbreviated as Cs(Pb /Mn)Cl@MSNs and can serve as the orange emitter for white light-emitting diodes (WLEDs). The MSN matrix was prepared via a templated sol-gel technique as monodispersed center-radial dendritic porous particles, with a diamater of ∼105 nm and an inner pore size of ∼13 nm. The MSN was then utilized as the matrix to initiate the growth of Mn-doped perovskite nanocrystals (NCs). The NCs in the resulting composite have an average diameter of 8 nm and a photoluminescence quantum yield of >30%. In addition, the optical properties of the Cs(Pb /Mn)Cl@MSNs can be tuned by varying the Mn doping level. The resulting composites presented a significantly improved resistance to ultraviolet (UV) light, temperature, and moisture compared to that of bare Cs(Pb/Mn)Cl. Finally, we fabricated down-converting WLEDs by using Cs(Pb /Mn)Cl@MSNs as the orange-emitting phosphor deposited onto UV-emitting chips, demonstrating their promising applications in solid-state lighting. This work provides a valuable approach to fabricating stable orange luminophores as replacements for traditional emitters in light-emitting diode devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b00010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!