Chromosomal microdeletions frequently cause loss of prognostically relevant tumor suppressor genes in hematologic malignancies; however, detection of minute deletions by conventional methods for chromosomal analysis, such as G-banding and fluorescence in situ hybridization (FISH), is difficult due to their low resolution. Here, we describe a new diagnostic modality that enables detection of chromosomal microdeletions, using CDKN2A gene deletion in B cell lymphomas (BCLs) as an example. In this method, which we refer to as amplified-FISH (AM-FISH), a 31-kb fluorescein isothiocyanate (FITC)-conjugated DNA probe encoding only CDKN2A was first hybridized with the chromosome, and then labeled with Alexa Fluor 488-conjugated anti-FITC secondary antibody to increase sensitivity. CDKN2A signals were equally identifiable by AM-FISH and conventional FISH in normal mononuclear blood cells. In contrast, when two BCL cell lines lacking CDKN2A were analyzed, CDKN2A signals were not detected by AM-FISH, whereas conventional FISH yielded false signals. Furthermore, AM-FISH detected CDKN2A deletions in two BCL patients with 9p21 microdeletions, which were not detected by conventional FISH. These results suggest that AM-FISH is a highly sensitive, specific, and simple method for diagnosis of chromosomal microdeletions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-019-02617-xDOI Listing

Publication Analysis

Top Keywords

chromosomal microdeletions
16
conventional fish
12
situ hybridization
8
detection chromosomal
8
cdkn2a signals
8
am-fish conventional
8
cdkn2a
6
chromosomal
5
microdeletions
5
am-fish
5

Similar Publications

Introduction: 22q11 deletion syndrome (22q11DS) results from a microdeletion on chromosome 22 and is the most common microdeletion disorder in humans, affecting 1 in 2148 live births. Clinical manifestations vary widely among individuals and across different life stages. Effective management requires the involvement of a specialized multidisciplinary team.

View Article and Find Full Text PDF

Ovarian agenesis (OA) is a rare congenital condition characterized by the absence of one or both ovaries, often associated with chromosomal abnormalities, hormonal imbalances, and structural deformities. The condition is frequently diagnosed in females presenting with primary amenorrhea and delayed sexual development. This case report highlights a unique presentation of bilateral ovarian agenesis in a patient with chromosome X translocation, bone modeling disease, and primary amenorrhea.

View Article and Find Full Text PDF

Objective: To explore the clinical phenotype, pregnancy outcome and follow-up of fetuses with 15q11.2BP1-BP2 microdeletions in order to provide a basis for prenatal and reproductive consultation.

Methods: From March 2019 to December 2023, 20 fetuses who were diagnosed with 15q11.

View Article and Find Full Text PDF

Solitary median maxillary central incisor (SMMCI) syndrome, the mildest form of the holoprosencephaly spectrum, is a rare anomaly characterized by the presence of a single midline central incisor in both the deciduous and permanent dentitions. Affected individuals can present with additional midline defects beyond dental findings. The 22q11.

View Article and Find Full Text PDF

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!