Autoimmune rheumatic diseases (ARDs) affect 8% of the population, and approximately 78% of them are women. Cardiovascular disease (CVD) in ARDs encompasses different pathophysiologic processes, such as endothelial dysfunction, myocardial/vascular inflammation and accelerated atherosclerosis with silent clinical presentation, leading to heart failure (HF), usually with preserved ejection fraction. Echocardiography and cardiovascular magnetic resonance (CMR) are the two most commonly used noninvasive imaging modalities for the evaluation of HF in patients with ARDs. Echocardiography currently represents the main diagnostic tool for cardiac imaging in clinical practice. However, the demand for more efficient and prompt diagnostic and therapeutic approach in this specific population necessitates the implementation of modalities capable of providing a more detailed and quantified information from the point of tissue characterization. Furthermore, echocardiography is an operator and acoustic window depended modality, with relatively low reproducibility and unable to perform tissue characterization. CMR is a noninvasive modality without radiation that can give reproducible and operator-independent information about both myocardial function and tissue characterization. By providing quantification of oedema, stress perfusion defects and fibrosis, CMR can diagnose myocardial inflammation, micro-macro-vascular myocardial ischemia and replacement or diffuse fibrosis, respectively. Tissue characterization allows for moving beyond the cardiac function to the assessment of intra- and inter-cellular alterations and promotes the development of personalized cardiac and anti-rheumatic treatment in ARDs with HF. ARDs are mainly female diseases. Cardiac involvement leading in HF is not unusual in ARDs and remains the main cause of death. Noninvasive, nonradiating imaging modalities such as echocardiography and CMR represent the main diagnostic tools. Specifically, echocardiography represents the first diagnostic approach; however, it is CMR that gives information about the pathophysiologic background behind HF in ARDs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10741-019-09779-0DOI Listing

Publication Analysis

Top Keywords

tissue characterization
16
heart failure
8
autoimmune rheumatic
8
rheumatic diseases
8
imaging modalities
8
main diagnostic
8
ards
7
echocardiography
5
cmr
5
pathophysiology imaging
4

Similar Publications

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

Short-Term Assessment of High-Sensitivity C-Reactive Protein (hs-CRP) Changes Following One Anastomosis Gastric Bypass (OAGB) in Patients with Obesity: A Prospective Cohort Study.

Obes Surg

January 2025

Department of Surgery, Minimally Invasive Surgery Research Center, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Rasool‑E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.

Background: Obesity, characterized by excessive adipose tissue, is associated with chronic low-grade inflammation and elevated inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP). This inflammation is linked to obesity-associated medical problems, including cardiovascular diseases. One anastomosis gastric bypass (OAGB) has emerged as an effective metabolic and bariatric surgical procedure to address severe obesity and its associated inflammatory state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!