Introduction: Previously constructed Escherichia coli strains that produce 1-propanol use the native threonine pathway, or a heterologous citramalate pathway. However, based on the energy and cofactor requirements of each pathway, a combination of the two pathways produces synergistic effects that increase the theoretical maximum yield with a simultaneous unexplained increase in productivity.
Objective: Identification of key factors that contribute to synergistic effect leading to 1-propanol yield and productivity improvement in E. coli with native threonine pathway and heterologous citramalate pathway.
Method: A combination of snapshot metabolomic profiling and dynamic metabolic turnover analysis were used to identify system-wide perturbations that contribute to the productivity improvement.
Result And Conclusion: In the presence of both pathways, increased glucose consumption and elevated levels of glycolytic intermediates are attributed to an elevated phosphoenolpyruvate (PEP)/pyruvate ratio that is known to increase the function of the native phosphotransferase. Turnover analysis of nitrogen containing byproducts reveals that ammonia assimilation, required for the threonine pathway, is streamlined when provided with an NAD(P)H surplus in the presence of the citramalate pathway. Our study illustrates the application of metabolomics in identification of factors that alter cellular physiology for improvement of 1-propanol bioproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11306-018-1386-0 | DOI Listing |
Cancer Med
February 2025
Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, China.
Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.
View Article and Find Full Text PDFPharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!