Background: Highly sensitized candidates on the transplant waitlist remain a significant challenge, as current desensitization protocols have variable success rates of donor-specific antibody (DSA) reduction. Therefore, improved therapies are needed. A proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS) are critical survival factors for B-lymphocytes and plasma cells, which are the primary sources of alloantibody production. We examined the effect of APRIL/BLyS blockade on DSA in a murine kidney transplant model as a possible novel desensitization strategy.
Methods: C57BL/6 mice were sensitized with intraperitoneal (IP) injections of 2 × 10 BALB/c splenocytes. Twenty-one days following sensitization, animals were treated with 100 μg of BLyS blockade (B-cell activating factor receptor-immunoglobulin) or APRIL/BLyS blockade (transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin), administered thrice weekly for an additional 21 days. Animals were then euthanized or randomized to kidney transplant with Control Ig, BLyS blockade, or APRIL/BLyS blockade. Animals were euthanized 7 days posttransplant. B-lymphocytes and DSA of BLyS blockade only or APRIL/BLyS blockade-treated mice were assessed by flow cytometry, immunohistochemistry, and enzyme-linked immunospot.
Results: APRIL/BLyS inhibition resulted in a significant reduction of DSA by flow crossmatch compared with controls (P < 0.01). APRIL/BLyS blockade also significantly depleted IgM- and IgG-secreting cells and B-lymphocyte populations compared to controls (P < 0.0001). APRIL/BLyS blockade in transplanted mice also resulted in decreased B-lymphocyte populations; however, no difference in rejection rates were seen between groups.
Conclusions: APRIL/BLyS blockade with transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin significantly depleted B-lymphocytes and reduced DSA in this sensitized murine model. APRIL/BLyS inhibition may be a clinically useful desensitization strategy for sensitized transplant candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594891 | PMC |
http://dx.doi.org/10.1097/TP.0000000000002686 | DOI Listing |
PLoS One
March 2020
Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Chronic antibody mediated rejection (cAMR) remains a significant barrier to achieving long-term graft survival in kidney transplantation, which results from alloantibody production from B lymphocytes and plasma cells. APRIL (A proliferation-inducing ligand) and BLyS (B lymphocyte stimulator) are critical survival factors for B lymphocytes and plasma cells. Here we describe the results of APRIL/BLyS blockade in a murine cAMR kidney transplant model.
View Article and Find Full Text PDFTransplantation
July 2019
Division of Transplant, Department of Surgery, University of Wisconsin-Madison, Madison, WI.
Background: Highly sensitized candidates on the transplant waitlist remain a significant challenge, as current desensitization protocols have variable success rates of donor-specific antibody (DSA) reduction. Therefore, improved therapies are needed. A proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator (BLyS) are critical survival factors for B-lymphocytes and plasma cells, which are the primary sources of alloantibody production.
View Article and Find Full Text PDFPLoS One
November 2019
Department of Surgery, Division of Transplant, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Alloantibody represents a significant barrier in kidney transplant through the sensitization of patients prior to transplant through antibody mediated rejection (ABMR). APRIL BLyS are critical survival factors for mature B lymphocytes plasma cells, the primary source of alloantibody. We examined the effect of APRIL/BLyS blockade via TACI-Ig (Transmembrane activator calcium modulator cyclophilin lig interactor-Immunoglobulin) in a preclinical rodent model as treatment for both desensitization ABMR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!