In vitro generation of a secondary cytolytic T lymphocyte (CTL) response to Class I alloantigen requires two signals: recognition of the Class I antigen by precursor CTL (Signal 1), and subsequent interaction with lymphokine(s) (Signal 2). Previous work using subcellular antigen stimulation has demonstrated that the required lymphokine(s) is produced as a result of adherent cell uptake, processing, and Ia-restricted presentation of alloantigen to helper T cells. This pathway could be bypassed by addition to the cultures of supernatant from Con A-stimulated rat spleen cells. When an optimal level of lymphokine(s) is provided by addition of Con A supernatant, the magnitude of the CTL response obtained is dependent on the effectiveness of alloantigen recognition and triggering of the primed precursor CTL (pCTL). By using this approach, we examined the cellular and molecular requirements for generation of Signal 1. Previous results had indicated that pCTL were able to directly recognize subcellular antigen, and that cellular presentation of the antigen to pCTL was not required. Further evidence for this was provided by the finding that pulsing of the responder population for short times with liposomes containing purified H-2Kk resulted in effective stimulation of the response. Exposure of cells to antigen for 1 to 2 hr at 4 degrees C generated responses of comparable magnitude to those obtained when antigen was continuously present in the cultures. Experiments were also done to directly examine the ability of alloantigen-pulsed splenic adherent cells (SAC) to deliver Signal 1. Although the antigen-pulsed SAC were very effective in presenting to helper T cells to result in factor production, they were found to be very ineffective in providing Signal 1 to the pCTL. Having obtained strong evidence for triggering of pCTL occurring via direct recognition of the subcellular alloantigen, we then examined the role of antigen multivalency in recognition and triggering. Purified H-2Kk was prepared in a variety of forms of differing multivalency, ranging from monovalent papain cleavage product to large, highly multivalent liposomes and plasma membranes. The magnitude of the CTL responses obtained was found to be critically dependent on the multivalency of the antigen preparation. Examination of the antigen dose-response curves and maximal responses obtained suggests that valency of the antigen may be important both in determining the avidity of interaction between the pCTL and the antigen-bearing structure, and in determining the extent to which localized receptor cross-linking occurs on the cell surface to result in triggering.

Download full-text PDF

Source

Publication Analysis

Top Keywords

recognition triggering
12
antigen
11
antigen multivalency
8
class antigen
8
triggering primed
8
primed precursor
8
ctl response
8
precursor ctl
8
signal previous
8
subcellular antigen
8

Similar Publications

B,N-Embedded Helical Nanographenes Showing an Ion-Triggered Chiroptical Switching Function.

Angew Chem Int Ed Engl

January 2025

Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.

Intramolecular aromatic oxidative coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded p-framework, which leads to the high binding constant (Ka) of 1 × 105 M-1.

View Article and Find Full Text PDF

Suppression of Sepsis Cytokine Storm by Escherichia Coli Cell Wall-Derived Carbon Dots.

Adv Mater

January 2025

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.

Article Synopsis
  • Sepsis is a severe condition caused by an uncontrolled immune reaction to infections, often involving harmful bacteria like E. coli, and currently lacks effective treatments.
  • Researchers developed E. coli wall-derived carbon dots (E-CDs) that can reduce inflammation and improve survival rates in septic mice by binding to immune receptors and preventing excessive immune responses.
  • E-CDs also show promise in other models, reducing inflammation and oxidative stress, suggesting they could be a new therapeutic approach for treating sepsis by utilizing pathogen-derived materials.
View Article and Find Full Text PDF

Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt).

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles.

View Article and Find Full Text PDF

Hepatitis C Virus NS5A Activates Mitophagy Through Cargo Receptor and Phagophore Formation.

Pathogens

December 2024

Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.

Chronic HCV infection is a risk factor for end-stage liver disease, leading to a major burden on public health. Mitophagy is a specific form of selective autophagy that eliminates mitochondria to maintain mitochondrial integrity. HCV NS5A is a multifunctional protein that regulates the HCV life cycle and may induce host mitophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!