We theoretically and experimentally analyzed a conformational ensemble of a small, characteristic polypeptide consisting of positively- and negatively-charged amino acid residue clusters, (Lys)9(Glu)9(Lys)9, designed based on the supercoiled DNA-recognition (SDR) domain, with the capability of preferentially binding to supercoiled DNA. Advanced molecular dynamics (MD) simulations coupled with a generalized ensemble technique revealed that substantial amounts of ordered, helical structures were present at the boundaries of the Lys and Glu segments in the obtained conformational ensemble. In fact, the helical content of the peptide calculated from our MD simulations was consistent with that estimated from our experimental analysis employing circular dichroism (CD) spectroscopy. The statistical analysis of the structural ensemble revealed the metastable hydrophobic contact clusters, which were stabilized by closely cohesive residue contacts, formed through "hybrid" hydrophobic (methylene groups) and electrostatic (salt bridges) residue contacts. Both short-range and long-range residue contacts were involved in the metastable hydrophobic clusters, constituting the aforementioned local helical conformations and the compact entire structures, respectively. A significant helical propensity was also found in the (Lys)n and (Glu)m boundaries of other conventional protein structures deposited in the Protein Data Bank (PDB), thus indicating the generality of this conformational trend that has been identified herein.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp00103dDOI Listing

Publication Analysis

Top Keywords

residue contacts
12
positively- negatively-charged
8
amino acid
8
conformational ensemble
8
metastable hydrophobic
8
short peptide
4
peptide composed
4
composed positively-
4
negatively-charged "hydrophilic"
4
"hydrophilic" amino
4

Similar Publications

The thermostability and catalytic activity of GH11 xylanase XynASP from JOP 1030-1 were improved by systematically engineering the cord region. Ultimately, mutant DSM4 was developed through iterative combinations of mutations. Compared to the wild-type XynASP, DSM4 showed a 130.

View Article and Find Full Text PDF

Integrated biological-chemical system for phenol removal from petrochemicals wastewater.

Environ Sci Pollut Res Int

December 2024

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.

Phenol is a highly concerning pollutant in petrochemical industrial wastewater. It is extremely poisonous, carcinogenic, and persistent, therefore, it bioaccumulates in the food chain reaching humans, where it causes acute irritation to the skin, eyes, and respiratory tract, as well as chronic effects on the liver, kidneys, and nervous system. It spills or leaks easily into surface water or groundwater sources, leading to the creation of other harmful substituted compounds.

View Article and Find Full Text PDF

Essential oil of (L.) ssp. (Apiaceae) flower: chemical composition, antimicrobial potential, and insecticidal activity on (L.).

Z Naturforsch C J Biosci

January 2025

Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences of Meknes, 11201 Zitoune-Meknes B.P, Meknes, Meknes, Morocco.

In order to search for new chemotypes and to carry out a comparative study with the literature, the current study investigated the chemical composition of the essential oil of the flowers of (L.) ssp. using gas chromatography coupled with mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

Water-Enabled Electricity Generation by a Smooth Liquid-Like Semiconductor Coating Surface.

Small

December 2024

Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

Water energy-converting techniques that focus on interfacial charge separation and transfer have aroused significant attention. However, the water-repelling nature leads to a less dense liquid layer and a sharp gradient of liquid velocity, which limits its output performance. Here, a water sliding generator (WSG) based on a smooth liquid-like/semiconductor surface (SLSS) is developed that harnesses the full advantage of liquid sliding friction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!