Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein-protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30°C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2799 | DOI Listing |
Polymers (Basel)
December 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana (UTEM), J. P. Alessandri 1242, Santiago 7800002, Chile.
A series of hydrophilic copolymers were prepared using 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) from free radical polymerization at different feed monomer ratios using ammonium persulfate (APS) initiators in water at 70 °C. The herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) was grafted to Poly(HEMA--IA) by a condensation reaction. The hydrolysis of the polymeric release system, Poly(HEMA--IA)-2,4-D, demonstrated that the release of the herbicide in an aqueous phase depends on the polymeric system's pH value and hydrophilic character.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China.
Background: The rapid evolution of the COVID-19 pandemic and subsequent global immunization efforts have rendered early metabolomics studies potentially outdated, as they primarily involved non-exposed, non-vaccinated populations. This paper presents a predictive model developed from up-to-date metabolomics data integrated with clinical data to estimate early mortality risk in critically ill COVID-19 patients. Our study addresses the critical gap in current research by utilizing current patient samples, providing fresh insights into the pathophysiology of the disease in a partially immunized global population.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176206, India. Electronic address:
In the present study, we prepared Gum Acacia-cl-Acrylic acid-co-itaconic acid (GA-cl-AA-co-IA) hydrogels by free radical crosslink polymerization method for the efficient removal of Rhodamine-B (RhB) dye. The hydrogels were further characterized by different characterization techniques: Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Atomic force microscopy (AFM), Brunuer-Emmett-Teller (BET) and field emission scanning electron microscopy (FE-SEM) to confirm synthesis. The synthesis parameters were optimized by swelling studies, which were performed by gravimetric analysis method.
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.
Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.
Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!