Structural basis for RNA translocation by DEAH-box ATPases.

Nucleic Acids Res

Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.

Published: May 2019

DEAH-box adenosine triphosphatases (ATPases) play a crucial role in the spliceosome-mediated excision of pre-mRNA introns. Recent spliceosomal cryo-EM structures suggest that these proteins utilize translocation to apply forces on ssRNAs rather than direct RNA duplex unwinding to ensure global rearrangements. By solving the crystal structure of Prp22 in different adenosine nucleotide-free states, we identified two missing conformational snapshots of genuine DEAH-box ATPases that help to unravel the molecular mechanism of translocation for this protein family. The intrinsic mobility of the RecA2 domain in the absence of adenosine di- or triphosphate (ADP/ATP) and RNA enables DEAH-box ATPases to adopt different open conformations of the helicase core. The presence of RNA suppresses this mobility and stabilizes one defined open conformation when no adenosine nucleotide is bound. A comparison of this novel conformation with the ATP-bound state of Prp43 reveals that these ATPases cycle between closed and open conformations of the helicase core, which accommodate either a four- or five-nucleotide stack in the RNA-binding tunnel, respectively. The continuous repetition of these states enables these proteins to translocate in 3'-5' direction along an ssRNA with a step-size of one RNA nucleotide per hydrolyzed ATP. This ATP-driven motor function is maintained by a serine in the conserved motif V that senses the catalytic state and accordingly positions the RecA2 domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486627PMC
http://dx.doi.org/10.1093/nar/gkz150DOI Listing

Publication Analysis

Top Keywords

deah-box atpases
12
reca2 domain
8
open conformations
8
conformations helicase
8
helicase core
8
rna
5
atpases
5
structural basis
4
basis rna
4
rna translocation
4

Similar Publications

Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3' splice site usage.

RNA

March 2024

Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA

RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage.

View Article and Find Full Text PDF

Regulation of RNA helicase activity, often accomplished by protein cofactors, is essential to ensure target specificity within the complex cellular environment. The largest family of RNA helicase cofactors are the G-patch proteins, but the cognate RNA helicases and cellular functions of numerous human G-patch proteins remain elusive. Here, we discover that GPATCH4 is a stimulatory cofactor of DHX15 that interacts with the DEAH box helicase in the nucleolus via residues in its G-patch domain.

View Article and Find Full Text PDF

Structure and function of spliceosomal DEAH-box ATPases.

Biol Chem

July 2023

Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.

Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.

View Article and Find Full Text PDF

Conformational dynamics of the RNA binding channel regulates loading and translocation of the DEAH-box helicase Prp43.

Nucleic Acids Res

July 2023

Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.

The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA.

View Article and Find Full Text PDF

Helicases are motor enzymes found in every living organism and viruses, where they maintain the stability of the genome and control against false recombination. The DEAH-box helicase Prp43 plays a crucial role in pre-mRNA splicing in unicellular organisms by translocating single-stranded RNA. The molecular mechanisms and conformational transitions of helicases are not understood at the atomic level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!