Background: The prevalence of balance and gait deficits increases with age and is associated with the increased incidence of falls seen in the elderly population; these falls are associated with significant morbidity and mortality.
Objectives: To review changes in gait and balance associated with aging and the effect of visual perturbations on gait and balance in the elderly to provide a basis for future research.
Methods: PubMed and Cochrane Library were searched for articles from 1980 to present pertaining to gait and balance in older adults (>60) and younger adults (<60). Search terms included balance, posture, gait, locomotion, gait variability, gait disorders, gait disturbance, elderly, aging, falls, vision, visual, vestibular, and virtual reality. The references section of queried articles was also used to find relevant studies. Studies were excluded if subjects had a diagnosed gait or balance disorder.
Results: Elderly adults show age-related decline in sensory systems and reduced ability to adapt to changes in their environment to maintain balance. Elderly adults are particularly dependent on vision to maintain postural stability. Distinct changes in spatiotemporal gait parameters are associated with aging, such as slower gait and increased gait variability, which are amplified with exposure to visual perturbations. Increased gait variability, specifically with mediolateral perturbations, poses a particular challenge for elderly adults and is linked to increased falls risk. Virtual reality training has shown promising effects on balance and gait.
Conclusion: Elderly adults show age-related decline in balance and gait with increased gait variability and an associated increased risk of falls.
Level Of Evidence: 5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383322 | PMC |
http://dx.doi.org/10.1002/lio2.252 | DOI Listing |
Ann Phys Rehabil Med
January 2025
Healthy Brain & Mind Research Centre (HBM), School of Behavioural and Health Sciences, Australian Catholic University, 115 Victoria Parade, Fitzroy, VIC, 3065 Australia.
Background: Inaccurate perception of one's physical abilities is potentially related to age-related declines in motor planning and can lead to changes in walking. Motor imagery training is effective at improving balance and walking in older adults, but most research has been conducted on older adults following surgery or in those with a history of falls. Deficits in motor imagery ability are associated with reduced executive function in older adults with cognitive impairment.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Department of Rehabilitation Medicine, Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.
View Article and Find Full Text PDFTop Stroke Rehabil
January 2025
Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: The ability to step over an obstacle is often evaluated as part of fall-risk and balance assessments. Although different obstacle-crossing tests exist, their comparative predictive validity in stroke is unknown.
Objectives: To examine the predictive validity of different obstacle depths and different obstacle-crossing tests, including a novel, custom-height test and an existing "one-size-fits-all" obstacle test, for predicting post-stroke fallers.
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
J Orthop Surg Res
January 2025
Excellence Center for Hip & Knee Arthroplasty, Department of Orthopedic Surgery, Zuyderland Medical Center, Heerlen, The Netherlands.
Introduction: In 2020, 368 million people globally were affected by knee osteoarthritis, and prevalence is projected to increase with 74% by 2050. Relatively high rates of dissatisfactory results after total knee arthroplasty (TKA), as reported by approximately 20% of patients, may be caused by sub-optimal knee alignment and balancing. While mechanical alignment has traditionally been the goal, patient-specific alignment strategies are gaining interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!