Long-term genetic monitoring of populations is essential for efforts aimed at preserving genetic diversity of endangered species. Here, we employ a framework of long-term genetic monitoring to evaluate the effects of fragmentation and the effectiveness of the establishment of corridors in restoring population connectivity and genetic diversity of mouse lemurs . To this end, we supplement estimates of neutral genetic diversity with the assessment of adaptive genetic variability of the major histocompatibility complex (MHC). In addition, we address the challenges of long-term genetic monitoring of functional diversity by comparing the genotyping performance and estimates of MHC variability generated by single-stranded conformation polymorphism (SSCP)/Sanger sequencing with those obtained by high-throughput sequencing (next-generation sequencing [NGS], Illumina), an issue that is particularly relevant when previous work serves as a baseline for planning management strategies that aim to ensure the viability of a population. We report that SSCP greatly underestimates individual diversity and that discrepancies in estimates of MHC diversity attributable to the comparisons of traditional and NGS genotyping techniques can influence the conclusions drawn from conservation management scenarios. Evidence of migration among fragments in Mandena suggests that mouse lemurs are robust to the process of fragmentation and that the effect of corridors is masked by ongoing gene flow. Nonetheless, results based on a larger number of shared private alleles at neutral loci between fragment pairs found after the establishment of corridors in Mandena suggest that gene flow is augmented as a result of enhanced connectivity. Our data point out that despite low effective population size, maintains high individual heterozygosity at neutral loci and at MHC II DRB gene and that selection plays a predominant role in maintaining MHC diversity. These findings highlight the importance of long-term genetic monitoring in order to disentangle between the processes of drift and selection maintaining adaptive genetic diversity in small populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383737 | PMC |
http://dx.doi.org/10.1111/eva.12723 | DOI Listing |
BMC Plant Biol
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Perilla frutescens (L.) Britt. (Lamiaceae) leaves are essential culinary and medicinal herbs, native to East Asian countries.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.
View Article and Find Full Text PDFInvest New Drugs
January 2025
Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan.
The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland.
This study aimed to investigate the effects of environmental factors, sexual selection, and genetic variation on skull morphology by examining the skull structure of the European bison, a species at risk of extinction, and comparing it to other bovid species. The skull of the European bison was significantly bigger than that of other species of the tribe Bovini, and the results revealed considerable morphological differences in skull shape compared to other Bovini samples. The bison skull exhibited a broader shape in the frontal region and a more laterally oriented cornual process.
View Article and Find Full Text PDFSci Rep
January 2025
USDA-ARS National Peanut Research Laboratory, 1011 Forrester Dr. S.E, 39842, Dawson, GA, USA.
Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!