AI Article Synopsis

Article Abstract

The degree of introgressive hybridization between the Scottish wildcat and domestic cat has long been suspected to be advanced. Here, we use a 35-SNP-marker test, designed to assess hybridization between wildcat and domestic cat populations in Scotland, to assess a database of 295 wild-living and captive cat samples, and test the assumptions of the test using 3,097 SNP markers generated independently in a subset of the data using ddRAD. We discovered that despite increased genetic resolution provided by these methods, wild-living cats in Scotland show a complete genetic continuum or hybrid swarm structure when judged against reference data. The historical population of wildcats, although hybridized, clearly groups at one end of this continuum, as does the captive population of wildcats. The interpretation of pelage scores against nuclear genetic data continues to be problematic. This is probably because of a breakdown in linkage equilibrium between wildcat pelage genes as the two populations have become increasingly mixed, meaning that pelage score or SNP score alone is poor diagnostic predictors of hybrid status. Until better tools become available, both should be used jointly, where possible, when making management decisions about individual cats. We recommend that the conservation community in Scotland must now define clearly what measures are to be used to diagnose a wildcat in the wild in Scotland, if future conservation action is to be effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383845PMC
http://dx.doi.org/10.1111/eva.12720DOI Listing

Publication Analysis

Top Keywords

introgressive hybridization
8
cats scotland
8
wildcat domestic
8
domestic cat
8
population wildcats
8
scotland
5
distinguishing victim
4
victim threat
4
threat snp-based
4
snp-based methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!