Inspection of butt welds for complex surface parts using ultrasonic phased array.

Ultrasonics

School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China.

Published: July 2019

Detection of weld defects for complex surface parts has always been a difficult point in ultrasonic testing because the geometry complexity makes it difficult to arrange transducers and determine the propagation paths of acoustic beams. In this paper, the linear friction weld of the engine blade is taken as an example of the butt weld in complex surface parts, and the application of the ultrasonic array testing method is carried out. Firstly, the propagation properties of acoustic waves in the inspection area are analysed based on both the Snell's law and the acoustic pressure reciprocating transmittance (APRT). According to the inspection requirements, this study establishes a full-coverage inspection solution using multi-array transducers. Secondly, the whole inspection area is divided and the wedge parameters in each subarea are iteratively designed. Thirdly, based on the finite element method (FEM), a response simulation model of the ultrasonic array is established to testify the feasibility and validity of the inspection scheme. Lastly, experiments are conducted on the blade specimen welded by linear friction welding (LFW). The inspection results of different weld positions clearly identify the prefabricated crack defects, showing that the proposed method can fulfill the rapid and accurate inspection for the butt weld of complex surface parts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2019.02.011DOI Listing

Publication Analysis

Top Keywords

complex surface
16
surface parts
16
inspection
8
inspection butt
8
linear friction
8
butt weld
8
weld complex
8
ultrasonic array
8
inspection area
8
weld
5

Similar Publications

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Influence of macrophages and neutrophilic granulocyte-like cells on crystalline silica-induced toxicity in human lung epithelial cells.

Toxicol Res (Camb)

February 2025

Département Toxicologie et Biométrologie, Institut National de Recherche et de Sécurité pour la prévention des accidents du travail et des maladies professionnelles (INRS), 1 rue du Morvan, 54519 Vandœuvre-lès-Nancy, France.

In many industrial activities, workers may be exposed by inhalation to particles that are aerosolized, To predict the human health hazard of these materials, we propose to develop a co-culture model (macrophages, granulocytes, and alveolar epithelial cells) designed to be more representative of the inflammatory pulmonary response occurring in vivo. Phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells were used as macrophages, All-trans retinoic acid (ATRA)-differentiated HL60 were used as granulocytes and A549 were used as epithelial alveolar type II cells. A crystalline silica sample DQ12 was used as a prototypical particle for its capabilities to induce DNA damage, inflammatory response, and oxidative stress in epithelial cells; its polyvinylpyridine-N-oxide (PVNO)-surface modified counterpart was also used as a negative particulate control.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!