Discovery of Allele-Specific Protein-RNA Interactions in Human Transcriptomes.

Am J Hum Genet

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Published: March 2019

Gene expression is tightly regulated at the post-transcriptional level through splicing, transport, translation, and decay. RNA-binding proteins (RBPs) play key roles in post-transcriptional gene regulation, and genetic variants that alter RBP-RNA interactions can affect gene products and functions. We developed a computational method ASPRIN (Allele-Specific Protein-RNA Interaction) that uses a joint analysis of CLIP-seq (cross-linking and immunoprecipitation followed by high-throughput sequencing) and RNA-seq data to identify genetic variants that alter RBP-RNA interactions by directly observing the allelic preference of RBP from CLIP-seq experiments as compared to RNA-seq. We used ASPRIN to systematically analyze CLIP-seq and RNA-seq data for 166 RBPs in two ENCODE (Encyclopedia of DNA Elements) cell lines. ASPRIN identified genetic variants that alter RBP-RNA interactions by modifying RBP binding motifs within RNA. Moreover, through an integrative ASPRIN analysis with population-scale RNA-seq data, we showed that ASPRIN can help reveal potential causal variants that affect alternative splicing via allele-specific protein-RNA interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407496PMC
http://dx.doi.org/10.1016/j.ajhg.2019.01.018DOI Listing

Publication Analysis

Top Keywords

allele-specific protein-rna
12
genetic variants
12
variants alter
12
alter rbp-rna
12
rbp-rna interactions
12
rna-seq data
12
protein-rna interactions
8
interactions
5
asprin
5
discovery allele-specific
4

Similar Publications

Allele-specific binding of RNA-binding proteins reveals functional genetic variants in the RNA.

Nat Commun

March 2019

Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.

Allele-specific protein-RNA binding is an essential aspect that may reveal functional genetic variants (GVs) mediating post-transcriptional regulation. Recently, genome-wide detection of in vivo binding of RNA-binding proteins is greatly facilitated by the enhanced crosslinking and immunoprecipitation (eCLIP) method. We developed a new computational approach, called BEAPR, to identify allele-specific binding (ASB) events in eCLIP-Seq data.

View Article and Find Full Text PDF

Discovery of Allele-Specific Protein-RNA Interactions in Human Transcriptomes.

Am J Hum Genet

March 2019

Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Gene expression is tightly regulated at the post-transcriptional level through splicing, transport, translation, and decay. RNA-binding proteins (RBPs) play key roles in post-transcriptional gene regulation, and genetic variants that alter RBP-RNA interactions can affect gene products and functions. We developed a computational method ASPRIN (Allele-Specific Protein-RNA Interaction) that uses a joint analysis of CLIP-seq (cross-linking and immunoprecipitation followed by high-throughput sequencing) and RNA-seq data to identify genetic variants that alter RBP-RNA interactions by directly observing the allelic preference of RBP from CLIP-seq experiments as compared to RNA-seq.

View Article and Find Full Text PDF

The DNA packaging portal of the phage P22 procapsid is formed of 12 molecules of the 90,000 dalton gene 1 protein. The assembly of this dodecameric complex at a unique capsid vertex requires scaffolding subunits. The mechanism that ensures the location of the 12-fold symmetrical portal at only one of the 12 5-fold vertices of an icosahedral virus capsid presents a unique assembly problem, which, in some viruses, is solved by the portal also acting as initiator of procapsid assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!