Obesity is characterized by enhanced MR (mineralocorticoid receptor) activation, vascular stiffness, and associated cardiovascular and kidney disease. Consumption of a Western-style diet (WD), high in saturated fat and refined carbohydrates, by female mice, leads to obesity and vascular stiffening. Use of ECMR (endothelial cell-specific MR) knockout mice supports that ECMR activation is critical for development of vascular and cardiac fibrosis and stiffening. However, the role of ECMR activation in kidney inflammation and fibrosis remains unknown. We hypothesized that cell-specific deletion of ECMR would prevent WD-induced central aortic stiffness and protect the kidney from endothelial dysfunction and vascular stiffening. Four-week-old female ECMR KO and wild-type mice were fed either mouse chow or WD for 16 weeks. WD feeding increased body weight and fat mass, proteinuria, as well as vascular stiffness indices (pulse wave velocity and kidney artery stiffening) and impaired endothelial-dependent vasodilatation without blood pressure changes. The WD-induced kidney arterial stiffening was associated with attenuated eNOS (endothelial NO synthase) activation, increased oxidative stress, proinflammatory immune responses, alterations in extracellular matrix degradation pathways, and fibrosis. ECMR deletion prevented these abnormalities by improving eNOS activation and reducing macrophage proinflammatory M1 polarization, expression of TG2 (transglutaminase 2), and MMP (matrix metalloproteinase)-9. Our data support the concept that ECMR activation contributes to endothelial dysfunction, increased kidney artery fibrosis/stiffening, and impaired NOS (NO synthase) activation, processes associated with macrophage infiltration and polarization, inflammation, and oxidative stress, collectively resulting in tubulointerstitial fibrosis in females consuming a WD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448566 | PMC |
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!