Glycopeptidome profiling provides large-scale information about the glycosylation level of endogenous peptides, reflecting the dynamic processes of disease occurrences and developments. However, endogenous glycopeptides are usually submerged in complex fluids containing a wide variety of interference molecules, such as high concentration proteins, nonglycopeptides, and salts, which confounds attempts to identify glycopeptidome. Here, a dual-hydrophilic metal-organic framework is developed to selectively capture endogenous glycopeptides in complex biological fluid. The hydrophilic matrix material provides specific selectivity toward glycopeptides, while the deliberate surface regulation using hydrophilic species enhances its interaction with glycopeptides. This hydrophilic probe presents an extremely high performance in anti-interfering enrichment of glycopeptides from mimic complex samples, even when the molar ratio of immunoglobulin G versus bovine serum albumin was up to about 1:5000. More excitingly, in the practical application of glycopeptidome analysis, a total of 380 endogenous N-glycopeptides with 180 unique N-glycopeptide sites were identified from human plasma. This strategy is expected to broaden the application of dual-hydrophilic MOF-based materials, especially in dealing with the challenges of extremely complex biological samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b00542 | DOI Listing |
Bio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2025
Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan. Electronic address:
MicroRNAs (miRNAs), which are small non-coding RNAs, are recognized as important significant endogenous bio-molecules that regulate the post-transcriptional processes of target genes. However, predictive methods for significantly working miRNAs are poorly understood. The present study aimed to establish a novel method, miRNA protein analysis of integrative relationship (miR-PAIR), for the identification of effectively working miRNAs involved in physiological or pathological events.
View Article and Find Full Text PDFACS Nano
November 2024
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
Pulmonary fibrosis (PF) is an interstitial lung disease tightly associated with the disruption of mitochondrial pool homeostasis, a delicate balance influenced by functional and dysfunctional mitochondria within lung cells. Mitochondrial transfer is an emerging technology to increase functional mitochondria via exogenous mitochondrial delivery; however, the therapeutic effect on mitochondrial transfer is hampered during the PF process by the persistence of dysfunctional mitochondria, which is attributed to impaired mitophagy. Herein, we reported engineering chondria mediated by itophagy-nhanced anoparticle (Mito-MEN), which promoted synchronal regulation of functional and dysfunctional mitochondria for treating PF.
View Article and Find Full Text PDFBiomater Adv
February 2025
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017, AvePark, Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. Electronic address:
The functional restoration of a damaged cardiac tissue relies on a synchronized contractile capacity of exogenous and/or endogenous cardiomyocytes, which is challenging to achieve. Here, we explored the potential of the short glycopeptide diphenylalanine glucosamine-6-sulfate (FFGlcN6S) conjugated with an aromatic moiety, namely fluorenylmethoxycarbonyl (Fmoc), to enhance cardiac tissue regeneration. At physiological conditions, Fmoc-FFGlcN6S assembles into nanofibrous hydrated meshes, i.
View Article and Find Full Text PDFScience
November 2024
School of Biosciences, University of Sheffield, Sheffield, UK.
Methicillin-resistant (MRSA), in which acquisition of [which encodes the cell wall peptidoglycan biosynthesis component penicillin-binding protein 2a (PBP2a)] confers resistance to β-lactam antibiotics, is of major clinical concern. We show that, in the presence of antibiotics, MRSA adopts an alternative mode of cell division and shows an altered peptidoglycan architecture at the division septum. PBP2a can replace the transpeptidase activity of the endogenous and essential PBP2 but not that of PBP1, which is responsible for the distinctive native septal peptidoglycan architecture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!