Purpose: Type 2 diabetes mellitus (T2DM) was associated with gut microbial impairment (dysbiosis) and neurological and behavioral disorders. The role of the gut-brain axis in the management of many diseases including T2DM has been the focus of much research activity in the recent years. However, a wide knowledge gap exists about the gut microbial effects on the function of glia cells. Hence, the present study was aimed to examine the effects of psychobatics on dysbiosis and glia cells function in enteric and central nervous system with an inflammatory insight in T2DM.
Methods: Thirty rats were treated by Lactobacillus (L.) plantarum, inulin, or their combination (synbiotic) for 8 weeks after inducing T2DM. Fecal sample was collected to evaluate gut microbial composition. Then, the rats were sacrificed, and the colon, amygdala, and prefrontal cortex (PFC) were studied.
Results: T2DM resulted in dysbiosis and increased levels of glial cell-derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP), and inflammatory markers (IL-17, IL-6, and TLR-2) in the colon and brain. However, concurrent supplementation of L. plantarum and inulin could improve the gut microbial composition as well as reduce the levels of inflammatory cytokines. While the administration of L. plantarum led to a significant decrease in TLR-2 as well as GDNF and GFAP only in the amygdala, the synbiotic intake could make such changes in the colon, amygdala, and PFC.
Conclusions: Our findings demonstrated an innovative approach to the beneficial effects of psychobiotics in neuroinflammation and behavioral performance through gut microbiota changes, focusing on possible role of glial cells in gut-brain axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00394-019-01924-7 | DOI Listing |
Sci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFBest Pract Res Clin Rheumatol
January 2025
Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:
Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States. Electronic address:
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check; while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, in which microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens.
View Article and Find Full Text PDFComput Biol Med
January 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. Electronic address:
The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311113, China. Electronic address:
The intestine features a two-front nutrient supply environment, comprising an enteral side enriched with microbial and dietary metabolites and a serosal side supplied by systemic nutrients, collectively supporting intestinal and systemic homeostasis, but there is currently no optimal approach for extracting and assessing the local intestinal microenvironment. Here, we present a protocol for constructing a nutrient supply model in mice and extracting gut interstitial fluid (GIF) via centrifugation. This model and the extracted GIF are suitable for downstream analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!